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Effective Mordell

X/Q smooth projective curve of genus g ≥ 2

Mordell Conjecture (≈ 100 years + 1 week ago)
#X (Q) < ∞

▶ Chabauty (1941): proved finiteness if r := rk JacX (Q) < g

▶ Faltings (1983): proved Mordell in general

Open problem: How to determine X (Q) in practice?

Can use computer search to list points in X (Q) but how do we know we found them all?

Chabauty’s proof can be made effective but the condition r < g is not always satisfied
→ Chabauty–Kim method (aka non-abelian Chabauty)
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The Chabauty–Kim method

For p a prime of good reduction, try to locate X (Q) inside X (Qp). Kim constructs a
descending sequence of subsets

X (Qp) ⊇ X (Qp)1 ⊇ X (Qp)2 ⊇ . . .

all containing X (Q). The set X (Qp)n is called the Chabauty–Kim locus of depth n.
▶ X (Qp)n is cut out inside X (Qp) by p-adic locally analytic functions

(more precisely: iterated Coleman integrals)
▶ X (Qp)1 is finite if r < g (Chabauty)
▶ X (Qp)2 is finite if r < g + ρ− 1, where ρ := rkNS(JacX ) (Quadratic Chabauty)
▶ Bloch–Kato or Fontaine–Mazur ⇒ #X (Qp)n < ∞ for n ≫ 0
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Kim’s Conjecture

Kim’s Conjecture
X (Qp)n = X (Q) for n ≫ 0.

▶ Practical relevance: if true, can try to compute
X (Q) by computing X (Qp)n for n = 1, 2, . . .

▶ Theoretical relevance: Kim’s Conjecture implies
local-to-global principle for Grothendieck’s Section
Conjecture (Betts–Kumpitsch–L.)

Computing X (Qp)n is hard!
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The thrice-punctured line

This paper: compute some (refined) Chabauty–Kim loci in the best-understood example

P1 ∖ {0, 1,∞}.

Setting:
▶ S : finite set of primes
▶ ZS = O(Spec(Z)∖ S): ring of S-integers
▶ X = P1

ZS
∖ {0, 1,∞}: thrice-punctured line

We are interested in the S-integral points X (ZS). S-unit equation:

x + y = 1 with x , y ∈ Z×
S

Solutions are x ∈ Q s.t. x and 1 − x are of the form ±
∏

ℓ∈S ℓ
eℓ with eℓ ∈ Z.

Theorem (Siegel–Mahler, 1933)
X (ZS) is finite.
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Some small sets S

▶ Example S = ∅:
X (Z) = ∅

▶ Example S = {2}:

X (Z[1/2]) =
{

2,−1,
1
2

}
▶ Example S = {2, 3}:

X (Z[1/6]) =
{

2,
1
2
,−1, 3,

1
3
,
2
3
,
3
2
,−1

2
,−2, 4,

1
4
,
3
4
,
4
3
,−1

3
,−3, 9,

1
9
,
8
9
,
9
8
,−1

8
,−8

}
(Levi ben Gershon 1342, The Harmony of Numbers)
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Chabauty–Kim for the thrice-punctured line

Let p ̸∈ S , so that X (ZS) ⊆ X (Zp). Have Chabauty–Kim loci

X (Zp) ⊇ X (Zp)S ,1 ⊇ X (Zp)S ,2 ⊇ . . .

all containing X (ZS), as in the projective higher genus case.

Kim (2005): #X (Zp)S,n < ∞ for n ≫ 0

Dan-Cohen, Wewers, Brown, Corwin: motivic variant of Chabauty–Kim method
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Refined Chabauty–Kim

Betts–Dogra (2020): refined Chabauty–Kim loci

X (Zp) ⊇ X (Zp)
min
S,1 ⊇ X (Zp)

min
S ,2 ⊇ . . .

Idea: partition S-integral points by their reductions modulo primes ℓ ∈ S

redℓ : X (ZS) ⊆ P1(ZS) = P1(Z) ↠ P1(Fℓ)

Refined Kim’s Conjecture

X (Zp)
min
S,n = X (ZS) for n ≫ 0

proved for S = {2} and all odd p in depth max(1, p − 3) (Betts–Kumpitsch–L. 2023)
proved for S = {2, q} and p = 3 in depth 2 when q = 2n ± 1 > 3 Fermat or Mersenne
(Best–Betts–Kumpitsch–L.–McAndrew–Qian–Studnia–Xu 2024)
case S = {2, 3}: depth 2 does not suffice → go to depth 4 (later)
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Depth 2 loci

Let S = {2, q} for some odd prime q. Focus on

X (ZS)(1,0) := {x ∈ X (ZS) : red2(x) ∈ X ∪ {1}, redq(x) ∈ X ∪ {0}}

and associated refined Chabauty–Kim loci X (Zp)
(1,0)
S ,n .

Theorem (BBKLMQSX)

The depth 2 locus X (Zp)
(1,0)
{2,q},2 is defined inside X (Zp) by

Li2(z)− a log(z) Li1(z) = 0

for some computable p-adic constant a = a(q) ∈ Qp.

Here, log is the p-adic logarithm and Lim is the p-adic polylogarithm

Lim(z) =

∫ z

0

dx
x

· · · dx
x

dx
1 − x

(m-fold iterated integral)
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Computing depth 2 loci

This paper: Sage code for computing X (Zp)
(1,0)
{2,q},2 for arbitrary p and q

→ https://github.com/martinluedtke/RefinedCK

Example: S = {2, 3}, p = 5. Have X (Z[1/6])(1,0) = {−3,−1, 3, 9}.

p = 5; q = 3
a = -Qp(p)(3).polylog(2)
CK_depth_2_locus(p,q,10,a)

Output:

[2 + O(5^9),
2 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^9),
3 + O(5^6),
3 + 5^2 + 2*5^3 + 5^4 + 3*5^5 + O(5^6),
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^9),
4 + 5 + O(5^9)]
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Analysing the size of depth 2 loci

How does the size of X (Zp)
(1,0)
{2,3},2 vary with the choice of auxiliary prime p?

p 5 7 11 13 17 19 23 29 31 . . . 1091 1093 1097 . . .
#X (Zp)

(1,0)
{2,3},2 6 8 18 16 22 20 20 26 36 . . . 1076 2154 1078 . . .

Observations:
▶ size is even
▶ 0 or 2 points in each residue disc
▶ almost always of size ≈ p, but for p ∈ {1093, 3511} of size ≈ 2p

Can explain this heuristically. Related to 1093 and 3511 being (the only known)
Wieferich primes, i.e., primes with 2p−1 ≡ 1 mod p2.

Similar observations for S = {2, q} with q different from 3.
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Ingredients for computing depth 2 loci

Li2(z)− a(q) log(z) Li1(z) = 0

How to compute the zero locus?
1. Compute the p-adic constant a(q) using modified algorithm of Dan-Cohen–Wewers

→ https://github.com/martinluedtke/dcw_coefficients
2. Compute power series for polylogarithms on residue discs around roots of unity ζ

Lim(ζ + pt) =
∞∑
k=1

am,kt
k

→ Besser–de Jeu’s “Li(p)-service” paper
3. Implemented Hensel’s Lemma for finding roots of p-adic power series with correct

precision: function Zproots
→ https://github.com/martinluedtke/RefinedCK
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Aside: p-adic root finding

The 2-adic polynomial t2 − 1 with roots {±1}, when given only to precision 2, cannot
be distinguished from t2 − 5 which has no roots in Z2:

K = Qp(2,prec=2)
R.<t> = K['t']
Zproots(t^2-1) # => PrecisionError

When t2 − 1 is given to precision 3, the roots {1,−1} are determined to precision 2.
The polynomial cannot be distinguished from t2 − 9 with roots {−3, 3}.

K = Qp(2,prec=3)
R.<t> = K['t']
Zproots(t^2-1) # => [1 + O(2^2), 1 + 2 + O(2^2)]

Martin Lüdtke 13/19



Depth 4 loci

Adapting work of Corwin and Dan-Cohen to the refined setting, we derive a new
function for the refined depth 4 locus in the case S = {2, 3}:

Theorem (L. 2024)

Let S = {2, 3} and p ̸∈ S . Any point z in the refined Chabauty–Kim locus X (Zp)
(1,0)
{2,3},4

satisfies, in addition to the depth 2 equation, the equation

det

Li4(z) log(z) Li3(z) log(z)3 Li1(z)
Li4(3) log(3) Li3(3) log(3)3 Li1(3)
Li4(9) log(9) Li3(9) log(9)3 Li1(9)

 = 0.

Also have a depth 4 equation for general S = {2, q} but it is less explicit.
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Computing depth 4 loci for S = {2, 3}

Use the new equation to compute depth 4 locus X (Zp)
(1,0)
{2,3},4:

p = 5; q = 3; N = 10
coeffs = Z_one_sixth_coeffs(p,N)
CK_depth_4_locus(p,q,N,coeffs)

Output:

[2 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^9),
3 + O(5^6),
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^9),
4 + 5 + O(5^9)]

This is {−3, 3,−1, 9} = X (Z[1/6])(1,0), extra points are eliminated.
⇒ Refined Kim’s Conjecture holds for S = {2, 3} and p = 5
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Verifying Kim’s Conjecture

I computed depth 4 loci for S = {2, 3} for many primes p:

Theorem (L. 2024)
The Refined Kim’s Conjecture holds for S = {2, 3} and all primes 3 < p < 10,000.
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Summary

▶ Sage code to compute depth 2 Chabauty–Kim loci for S = {2, q} and all p
▶ Analysed sizes of those loci, explained numerical observations
▶ Derived functions vanishing on depth 4 loci
▶ Verified Kim’s Conjecture for S = {2, 3} and p < 10,000
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