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1. Introduction and apologies

What follows is a somewhat disorganised collection of lecture notes explaining
the first author’s motivations and mode of thinking about the so-called ’nonabelian
method of Chabauty’. The title is somewhat misleading in that there is no attempt
to lay out foundational methods in a systematic way and certainly no attempt at
providing proofs. Rather, the intention was to capture the foundational ideas. It
is well-known that in mathematics, a good deal of hard work is necessary to make
ideas effective and useful. From this point of view, the content of these notes is
likely to represent nothing but vague laziness. Nonetheless, for a student completely
new to these ideas, it is hoped that it might provide a rough guide to an area that
the authors find interesting.

Non-abelian Selmer schemes were initially developed from around 2000 to 2004
[Kim05, Kim09]. Afterwards, M.K. struggled with various vague directions for
making the techniques more powerful and tractable. This meant firstly that one
should end up with an algorithm for completely computing the rational points on
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a curve of genus at least two, even if it relies on conjectures in the manner of the
theory of elliptic curves. Secondly, it was expected that a precise framework of
’non-abelian BSD’ would emerge. Thirdly, ideas from geometric gauge theory were
to play an important role.

As it stands, laziness has turned all these grandiose thoughts into an unfinished
project. For M.K., if some young mathematician reading these notes finds ideas
therein rich enough to inspire them to take the project forward into something deep
and interesting, of course it would be extremely gratifying.

2. Arithmetic of algebraic curves

Diophantine geometry is concerned with maps

U - V

between schemes that are absolutely finitely-generated. This means U and V are
both finite unions of schemes of the form Spec(R), where R is isomorphic to a
quotient ring of a polynomial ring Z[x1, x2, . . . , xn] over the integers. Obviously,
this will involve coming to grips with the geometry of U and V in their own right,
which is itself quite a difficult task. Already, when U = Spec(OF ), where F is an
algebraic number field, the topology ends up being quite elaborate, involving at least
the machinery of class field theory to begin to understand. As usual in mathematics
(and science in general), one goes on to study the interaction between such objects
even in the absence of a complete understanding of the objects themselves.

In fact, we will confine our attention to smooth algebraic curves of genus g
defined over Q, which we will attempt to consistently denote by X. A large part of
the reason is that one author (M.K.) has not worked seriously on any other class
of schemes. The reader will notes that Q is not absolutely of finite type and hence,
neither is X. However, they are simple limits associated to diagrams of the form

X XN

Spec(Q) Spec(Z[1/N ]),

and tradition dictates that there is a certain simplicity in allowing such limits into
the zoology of interest. The restriction to the field Q is almost certainly unnecessary
in the long run [Dog20], but most of the existing work took place in this context,
so we will stick to it for conceptual simplicity.

Thus, when we try to express the associated problems in elementary terms, X
might be given by a polynomial equation

f(x, y) = 0

of degree d with rational coefficients, where

g = (d− 1)(d− 2)/2.

(We are assuming for this that the corresponding homogeneous equation has no
singularities.) Diophantine geometry studies the setX(Q) of rational solutions from
a geometric point of view. It is probably well known by now that the structure is
quite different in the three cases:
g = 0: spherical geometry (positive curvature);
g = 1: flat geometry (zero curvature);
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g ≥ 2: hyperbolic geometry (negative curvature).
The geometry listed in parentheses refers to one given by the so-called uniformi-
sation theorem, whereby the universal covering space admits a constant curvature
metric compatible with the complex structure. The relevance of this metric to the
arithmetic structure is not at all a straightforward matter to understand, even while
much of the research on the arithmetic geometry of curves has been informed by
this connection, albeit indirectly.

We go on to a brief summary of what is known.

2.1. Genus zero curves. Even now, after millennia of studying these prob-
lems, it is a bit of an embarrassment to number theory that the case g = 0 is the
only one that is completely understood. For g = 0, techniques like local-to-global
methods or generation of solutions via intersection theory reduce the question to
class field theory and algebraic geometry. It should be appreciated that the inter-
action between these two areas in the resolution of genus zero equations is already
an indication of the depth of arithmetic geometry.

The idea is to study Q-solutions by considering the geometry of solutions in
various completions, namely the local fields

R,Q2,Q3, . . . ,Q691, . . .

Local-to-global methods allow us to “globalise”. For example, the equation

37x2 + 59y2 − 67 = 0

has a Q-solution if and only if it has a solution in each of R, Q2, Q37, Q59, Q67.
More generally,

ax2 + by2 = c

with a, b, c integral, square-free, and pairwise coprime has a rational solution if and
only if it has a solution in R and Qp for p = 2 and all p dividing abc. This is a
criterion that can be effectively implemented. That is, there is a method based on
local class field theory that enables one to determine whether or not such quadratic
equations over Qp have a solution. That is, the equation has a solution in Qp if
and only if

(−1, abc)p = (a, b)p(a,−c)p(b,−c)p,
where (x, y)p ∈ {±1} is the Hilbert symbol, for which there is an explicit formula
[Ser78]. The possibility of globalising the information, that is, deducing the exis-
tence of a Q-solution from all these local solutions, is called the Hasse principle.

If the existence of a solution is guaranteed, it can be found by an exhaustive
search. This is a curious aspect of certain algorithms. Swinnerton-Dyer asserted
quite strongly to M.K. once that he doesn’t regard such a thing as an algorithm.
M.K. disagrees: the current algorithms for computing the Mordell–Weil basis for
an elliptic curve (which we will review later) have no a priori bound. The only
problem with an exhaustive search is if one is ignorant of the existence, in which
case one indeed does not know when to stop.

For this problem, there is an alternative theorem of Holzer that says if a solution
exists, then there is a solution (x, y) = (p/r, q/r) such that

|p| ≤
√
|bc|, |q| ≤

√
|ac|, and |r| ≤

√
|ab|.

This gives a bound, albeit exponential in size, on the length of the exhaustive
search. (Here, we are using the jargon of complexity theory, whereby an algorithm
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of ‘exponential’ complexity refers to one whose running time is a polynomial in the
exponential of the length of the input. In our case, the length of the input can be
taken as the log of |abc|.)

From one solution, there is a method for parametrising all others, sometimes
called the method of sweeping lines, that consists of searching for intersection points
between the curve and all lines passing through the given point. The best known
case is certainly the circle equation x2 + y2 = 1, for which the solution (−1, 0)
allows us to generate all others via the formula( t2 − 1

t2 + 1
,

2t

t2 + 1

)
, t ∈ Q.

Such a formula should convey the sense in which the rational solutions are com-
pletely understood for equations of genus zero. The reader who has never tried this
before should also work this all out for the equation

3x2 + 5y2 = 167.

2.2. Genus one curves. When g = 1 (for example if X is given by a poly-
nomial equation f(x, y) = 0 of degree d = 3), the cases where X(Q) is

• empty;
• non-empty finite;
• infinite

are all possible. Crucially, the Hasse principle fails. For example the curve defined
by the equation

3x2 + 4y2 + 5 = 0

has points in all completions Qv, but no rational points. For now, we will ignore the
thorny question of existence. In fact, in contrast to the genus zero case, even when
we are already given a point inX(Q), it is difficult to describe the full set. Analogous
ideas in this setting will lead to the use of a fixed O ∈ X(Q) as the origin for an
abelian group structure on X(Q) constructed via the chord-and-tangent method:
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Mordell’s Theorem states that the group X(Q) is finitely generated, so it has the
form

X(Q) ' X(Q)tor × Zr,
where r ≥ 0 is called the rank of the curve and X(Q)tor is a finite, effectively
computable abelian group.

ComputingX(Q)tor is a straightforward matter dealt with in elementary courses.
If all else fails, there is the Nagell–Lutz theorem, which writes the curve in the form

X := {y2 = x2 + ax+ b} ∪ {∞}
with a, b ∈ Z and states that if (x, y) ∈ X(Q)tor, then x, y are integral and we have
the divisibility relation

y | (4a3 + 27b2).

This allows us to enumerate the possibilities. (There is a slight subtlety: Given a
candidate point (x, y), how might one check for sure that it is torsion?)

However, the algorithmic computation of the rank and a full set of generators for
X(Q) is very difficult, and is the subject of the conjecture of Birch and Swinnerton-
Dyer. Note that a set of generators for the group is essentially the same starting
point as a single point for genus zero curves, in that this is the input that leads
to all points via a straightforward geometric method. In practice, this problem is
quite often computationally feasible. For example, for

y2 = x3 − 2,

the programme Sage will give you r = 1 and the point P = (3, 5) as generator.
In fact, the algorithm uses the BSD conjecture, in that the termination of the
algorithm relies on the finiteness of a p-primary portion of the Tate–Shafarevich
group for some p. If you haven’t spent much time working with such programmes,
this is a good time to start. Using it, it is easy to compute the group law, so that
the first few multiples of P are given as follows:

P = (3, 5),

2P = (129/100,−383/1000),

3P = (164323/29241,−66234835/5000211),

4P = (2340922881/58675600, 113259286337279/449455096000).

It is also amusing to list the denominators of the x-coordinates of nP for 1 ≤ n ≤ 25
and observe a parabolic shape appear as the envelope of the numbers:

1
100
29241
58675600
160280942564521
513127310073606144900
3458519104702616679044719441
3010683982898763071786842993779918400
127572396335305049740547038646345741798859364401
13329936285363921819106507497681304319732363816626483202500
918020566047336292639939825980373481958168604589649639535939426806601
476088257435677420666570040140397671703090151479401428275929725592970789841530576400
517259505997137252708661576463436113382457321023157206305176119137318035576641461456974416499430041
1695157737805673578566532640945563053182781205938594908840614530883470014634637386395309593113202867321147490308900
2087383381508579814729039868379345021143001051085795212900875780802585002664817768465881322626274140564516095419379452293626495521
325704035522759303464453485124332605422840016003871746136490681626053990633231638935167772720554528606660993635345035765571973589498368634364924729600
10776736947634918227614614352408984404955032246794228048964970083772883711800654462034871637404036189282208729306267207030278700609343603823968030599531869871288563100641
977045067892275426791298419605407262434566061421835382339235204543071504909296121298437699158469809704911815969865150809072855597565079107316301259016630314982644756361468548351139676168100
1663612367610189758519905039073539578879244497381411429945883102012051589287416025619862471428157057785418411215759238848000603951344584548000686405631490826158155167561213063168802091355136844939511215784099801
1070548882149736398913682535523476968851981048652576580836028875947619461441600745875007883414314057183310982315574792358425669178543162394084569618589212870981704388030380951955470817852127756933578336783782577923618936428271239690000
1148841392543900106530726401452054602441627147668497834216006454539222113553857087112647880054734472732451175656626683434076175648841698732464714357483150295241458620849997744122576992355627273296217004994108444076173986714339202502270793057789104043208584201
2055728773179981228645465821597876864392028989740096753244036343045174392858661776202456359670511085260292340255210780271976163586541589097135037719258960469311219056234634378898707892543246689115136523785889409263352201149179025059593720638007732083281052894489761138112808611852100
1390850702467075795241114474390003408252843025448488882438982890080738085642918329463921793002578761788851088890659905691858080746334995926468671148408518063869783106085777065055369052888193447504834444431389346342797865670014961942566194805796394211697450360223302790031973242065440102303295943418353061321841
17666267881362094922374455727965791889016407351972343371437912254818151517693288105619638510434375686864928262728451840436738624170422716072880804736400537893631740872054358311571638123404962212854191272695553282268039166385359232557693284783151624883960228915176995375275938092109076952583749406520477684015492944545595740291699182401600
614874132671086841905386881131639161418335776056130013865009355857954168299594317205579276287137857403780507248102300826144679373050541709033161733699221318979833435543000761783093095496718299273064439428941149430873167177730439903243006392108512556564742060926414715439899469202119229028305506397945842575492237746073378541233379075571950386327771498293213642357521
4535043376972225485863590222736364809047071879240408225230235893249776673512162768408954094372013307861082815062751127406395729102354627789585017808411742702420455706518629356145030780811711675186498397121242644425737603269109083567087204376622144766408678693771046990163171457845442134950877398010805906684918627706294398014250383563119883772154230841437659025905886730295448358005621469200900

Finally, we remark that the problem of determining the existence of a point on
a curve of genus one can by and large be absorbed into the theory of elliptic curves.
This is because any curve of genus one is in fact a principal bundle for an elliptic
curve, namely its Jacobian, and we need to know if this bundle is trivial. We will
be discussing principal bundles in greater detail below.
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2.3. Curves of higher genus. Our main concern in these lectures are in fact
curves of genus g ≥ 2, for example given by a polynomial equation f(x, y) = 0 of
degree d ≥ 4. For such curves, X(Q) is always finite. This is the statement of the
Mordell conjecture, which was proven by Faltings. However, it is very difficult to
compute the set X(Q), as the example of the Fermat equation,

xn + yn = 1, n ≥ 4,

shows. Sometimes it is very easy, such as

x4 + y4 = −1,

which does not have any solutions in the real numbers. However, when there is
no obvious local reason for non-existence (e.g., when there is already one known
solution), then it is hard to know when you have the full list. For example,

y3 = x6 + 23x5 + 37x4 + 691x3 − 631204x2 + 5169373941

obviously has the solution (1, 1729), but are there any others?
The effective Mordell problem is:

Find a terminating algorithm: X 7→ X(Q)

that lists the full set of rational solutions when a curve X is provided as input.
The Effective Mordell conjecture (Szpiro, Vojta, ABC, . . . ) is one approach to
making this precise by way of (archimedean) height inequalities. That is, it proposes
that you can give a priori bounds on the size of numerators and denominators of
solutions.

The rest of these notes will describe an alternative approach to the effective
Mordell problem using the (non-archimedean) arithmetic geometry of principal bun-
dles. Principal bundles are well-known in differential geometry as fibre bundles

P - M

over a manifold M whose fibres are isomorphic to a Lie group R. More precisely,
R acts on P on the right

P ×R - P

via bundle automorphisms in such a way that the choice of any point x ∈ Pm in a
fibre above a point m induces an isomorphism

R ' Pm;

r 7→ xr.

The natural examples are frame bundles consisting of bases for tangent bundles.
In algebraic geometry, the same kind of objects are called torsors, terminology

originating in French. They have been used already extensively in number theory
since the 1950’s in the form of Galois cohomology. However, it’s only with non-
abelian problems that the geometric view of their classification starts to assume
importance, as we will explain in the next sections. The key concept is that of
an arithmetic principal bundle, which is just a principal bundle on an arithmetic
scheme. A confusing point is that even on schemes whose underlying space is a
point, e.g., Spec(Q), principal bundles can be highly non-trivial. This is just a
reflection of the paucity of the set underlying a scheme when compared to the
full structure of the scheme itself. In fact, such a phenomenon is already present
in ‘ordinary’ geometry, since any two manifolds of dimension greater than zero
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have exactly the same set-theoretic structure as the interval [0, 1]. Geometry and
classification clearly rely on more than the underlying set.

3. Arithmetic principal bundles

We shall give a general description of arithmetic principal bundles in the étale
topology, a fundamental tool in the nonabelian method of Chabauty. For now, it
might be useful to fix a field K of characteristic zero and its absolute Galois group
GK = Gal(K/K). The group GK is a topological group with open subgroups given
by Gal(K/L) for finite field extensions L/K in K.

Definition 3.1. A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK ×R −→ R.

In an abstract framework, one can view R as a family of groups over the space
Spec(K), but we will somewhat avoid that formalism for the sake of concreteness.
(We are living in an age where groups are regarded as concrete while Grothendieck
topologies are (still) not.)

Example 3.2. Let A be an algebraic group defined over K, e.g., GLn or an abelian
variety. Then A(K) with the discrete topology is a group over K.

Example 3.3. The group
Zp(1) := lim←−µpn ,

where µpn ⊆ K is the group of pn-th roots of unity, is a group over K. It is the
Tate module of the group Gm. Thus, elements of Zp(1) are given by tuples (ζn)n
where

ζp
n

n = 1, ζp
m

nm = ζn.

As a topological group, there is an isomorphism

Zp(1) ' Zp = lim←−Z/pnZ,
but there is a continuous action of GK on the left hand side.

Definition 3.4. A principal R-bundle over K is a topological space P with com-
patible continuous actions of GK (from the left) and R (from the right and simply
transitive):

P ×R −→ P ;

GK × P −→ P ;

g(zr) = g(z)g(r) for g ∈ GK , z ∈ P, r ∈ R.

Note that P is trivial, i.e. isomorphic to R, exactly when there is a fixed point
z ∈ PGK . This is because in that case, the action induces a isomorphism

R ∼= z ×R ∼= P

compatible with all structures.

Example 3.5. Given any x ∈ K∗, we get a principal Zp(1)-bundle over K

P (x) := {(yn)n : yp
n

n = x, yp
m

nm = yn}.
The bundle P (x) is trivial if and only if x admits a pn-th root in K for all n. For
example, when K = C, then P (x) is always trivial. When K = Q, then P (x) is
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trivial if and only if x = 1 or p is odd and x = −1. For K = R and p odd, P (x)
is trivial for all x. For K = R and p = 2, the bundle P (x) is trivial if and only if
x > 0. This collection of cases should convey the sense in which principal bundles
can encode highly non-trivial arithmetic information.

We will encounter many variations on this example in the following. For now,
we note that for a principal R-bundle over K, if we choose z ∈ P , this determines
a continuous function cP : GK → R via

g(z) = zcP (g).

It is straightforward to check that the function satisfies the “cocycle condition”

cP (g1g2) = cP (g1) g1(cP (g2)),

defining the set
Z1(GK , R).

We get a well-defined class in non-abelian cohomology

[cP ] ∈ R\Z1(GK , R) =: H1(GK , R) =: H1(K,R),

where the R-action is defined by

cr(g) = rc(g)g(r−1).

We get thereby a bijection{
isomorphism classes of

principal R-bundles over K

}
∼= H1(GK , R).

Our main concern is the geometry of such non-abelian cohomology spaces in various
forms. We will also denote it by H1(K,R).

The most important example for us is when R is a unipotent fundamental group
of an algebraic curve. In this case, R will have a very complicated K-structure, i.e.,
GK-action. Some more classes that we will not be discussing here in spite of their
importance are:

• R consists of the K̄-points of an algebraic group A over K. In the case
of an abelian variety, H1(K,A(K̄)) is sometimes called the Weil–Châtelet
group of A. As mentioned above, a curve C of genus one is a principal
bundle for its Jacobian J , which is an elliptic curve, and defines a class in
[C] ∈ H1(K,J(K̄)).
• R is the holonomy group of a specific local system on a curve (Lawrence

and Venkatesh).
• R is a reductive group with a trivial K-structure, in which case

H1(GK , R) = R\Hom(GK , R).

Principal bundles are just Galois representations, ubiquitous and highly
important in number theory. The H1 here often takes the form of the
limit of analytic moduli spaces of Galois representations.

When K = Q, there are completions Qv and injections

Gv = Gal(Qv/Qv) ⊆ G := Gal(Q/Q),

giving rise to the localisation map

loc : H1(Q, R) −→
∏
v

H1(Qv, R)
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and an associated local-to-global problem. In fact, a wide range of problems in
number theory rely on the study of its image. The general principle is that the
local-to-global problem is easier to study for principal bundles than for points.
That is, as difficult as the localisation map in cohomology might be, it is much
easier than the naive inclusion

X(Q) ↪−→
∏
v

X(Qv).

3.1. Elliptic curves. The utility of arithmetic principal bundles in the the-
ory of elliptic curves is well-known, although they aren’t often discussed in this
language. Importantly, the moduli spaces there have a simple enough structure
that the geometric view is not really necessary for arithmetic applications. We give
a brief summary from a point of view close to our present concerns.

Let E be an elliptic curve over Q. We let G = Gal(Q/Q) act on the exact
sequence

0 −→ E(Q)[p] −→ E(Q)
p−→ E(Q) −→ 0

to generate the long exact sequence

0 E(Q)[p] E(Q) E(Q)

H1(Q, E[p]) H1(Q, E) H1(Q, E),

p

p

From this, we get the inclusion (Kummer map)

E(Q)/pE(Q) ↪→ H1(Q, E[p]).

A central problem in the theory of elliptic curves is the identification of the image

Im
(
E(Q)/pE(Q)

)
⊆ H1(Q, E[p]),

where the codomain is a simple example of a moduli space of principal bundles.
Of course, in this case, it’s just an Fp-vector space (albeit, a very large one). The
general goal is to understand this inclusion well enough to render E(Q)/pE(Q)
computable. That is, we would like to produce a set of elements B ⊂ E(Q) whose
classes mod pE(Q) generate the group. We remark that computing a set of genera-
tors for E(Q)/pE(Q) in this sense leads easily to a set of generators for E(Q) itself.
Therefore, the Diophantine geometry of elliptic curves is more or less reduced to
the study of the image of the Kummer map. We would therefore like to describe it
as carefully as possible. The tradition in number theory is to approach this problem
via various restrictions that the classes in the image must satisfy.

An essential restriction comes from the p-Selmer group

Sel(Q, E[p]) ⊆ H1(Q, E[p]),

defined to be the classes in H1(Q, E[p]) that locally come from points. This is
useful because the local version of this problem can be solved. To give a more
precise definition of the Selmer group, consider the following diagram:

0 E(Q)/pE(Q) H1(Q, E[p])

0 E(Qv)/pE(Qv) H1(Qv, E[p]).

locv locv
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Definition 3.6. The p-Selmer group Sel(Q, E[p]) ⊆ H1(Q, E[p]) is defined as

Sel(Q, E[p]) :=
⋂
v

loc−1
v

(
Im
(
E(Qv)/pE(Qv)

))
.

In other words, these are the global cohomology classes that locally lie inside
the image of the Kummer map. The key point is that the p-Selmer group is a
finite-dimensional Fp-vector space that is effectively computable and this already
gives us a bound on the Mordell–Weil group of E. That is, the rank of E(Q) must
be bounded by the dimension of the p-Selmer group. This is then refined by way
of the diagram

0 E(Q)/pnE(Q) H1(Q, E[pn])

0 E(Qv)/pnE(Qv) H1(Qv, E[pn]).

locv locv

for increasing values of n, which are compatible for these values. Thus, we get a
sequence of Selmer groups

Sel(Q, E[pn]) :=
⋂
v

loc−1
v

(
Im
(
E(Qv)/pnE(Qv)

))
⊂ H1(Q, E[pn]),

which form an inverse system compatible with quotients of the Mordell–Weil group:

. . . E(Q)/pn+1E(Q) E(Q)/pnE(Q) E(Q)/pn−1E(Q) . . .

. . . Sel(Q, E[pn+1]) Sel(Q, E[pn]) Sel(Q, E[pn−1]) . . .

In particular, if we map all these Selmer groups down to Sel(Q, E[p]), we get a
decreasing sequence

. . . Im
(
Sel(Q, E[pn+1])

)
Im
(
Sel(Q, E[pn]) . . . Sel(Q, E[p]).⊆ ⊆ ⊆ ⊆

In view of the previous diagram, these must all contain Im
(
E(Q)/pE(Q)

)
.

Conjecture 3.7 (BSD, Tate–Shafarevich).

Im
(
E(Q)/pE(Q)

)
=

∞⋂
n=1

Im
(
Sel(Q, E[pn]

)
⊆ Sel(Q, E[p]).

Of course this implies that

Im
(
E(Q)/pE(Q)

)
= Im

(
Sel(Q, E[pN ])

)
⊆ Sel(Q, E[p])

at some finite level pN at which point Im
(
E(Q)/pE(Q)

)
is regarded as being com-

puted. This is because Im
(
Sel(Q, E[pN ])

)
is computable via methods of algebraic

number theory.
There is a conditional algorithm for finding the N above via an exhaustive

search once we are guaranteed of its existence. We include the decreasing sequence
above into a large one

. . . E(Q)≤n/pE(Q) E(Q)≤n+1/pE(Q) . . . E(Q)/pE(Q)

. . . Im
(
Sel(Q, E[pn+1])

)
Im
(
Sel(Q, E[pn]) . . . Sel(Q, E[p])

⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆

involving the increasing sequence
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. . . E(Q)≤n/pE(Q) E(Q)≤n+1/pE(Q) . . . E(Q)/pE(Q)⊆ ⊆ ⊆ ⊆
where

E(Q)≤n/pE(Q)

denotes the image mod pE(Q) of the points E(Q)≤n of height ≤ n. In particular,
this is a computable set. The conjecture above implies that

E(Q)≤N/pE(Q) = Im
(
Sel(Q, E[pN ])

for N sufficiently large, and that at this point, we will have

E(Q)≤N/pE(Q) = E(Q)/pE(Q).

That is, we will have computed a full set of points that cover E(Q) mod p. It is
easy to go from here to a full set of generators of E(Q). A main goal of BSD is to
remove the conditional aspect of this algorithm.

3.2. The non-abelian case: a quick synopsis. A major theme of these
lectures is the possibility of extending the discussion on elliptic curves to curves of
higher genus. We focus on the sequence of maps

. . . −→ E[p3]
p−→ E[p2]

p−→ E[p]

of which we take the inverse limit to get the p-adic Tate module of E:

TpE := lim←−E[pn].

This is a free Zp-module of rank 2. The previous finite boundary maps can be
packaged into

j : E(Q) −→ lim←−H
1(Q, E[pn]) = H1(Q, TpE).

The key point is that
TpE ' πp1(Ē, O),

where πp1(X̄, b) refers to the pro-p completion of the fundamental group π1(X(C), b)
of the topological space defined by the complex points of a variety X. The map j
can be thought of as

x 7→ πp1(Ē;O, x),

where the last object is the pro-p completion of the homotopy classes of paths
π1(E(C);O, x) from O to x. We will review later the reason for these identifications.

The following is a fundamental fact of arithmetic homotopy:

Fact 3.8. If X is a variety defined over Q and b, x ∈ X(Q), then

πp1(X̄, b) and πp1(X̄; b, x)

admit compatible actions of GQ = Gal(Q/Q).

Here, the compatibility refers to the action

πp1(X̄; b, x)× πp1(X̄, b) - πp1(X̄; b, x),

that turns πp1(X̄; b, x) into a principal πp1(X̄, b)-bundle. That is the triples

(GQ, π
p
1(X̄, b), πp1(X̄; b, x))

are important concrete examples of (GK , R, P ) from the general definitions.
This can then be used to extend Kummer theory to general X, whereby we get

a map
j : X(Q) −→ H1(Q, πp1(X̄, b))
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given by
x 7→ [πp1(X̄; b, x)].

For each prime v, we have local versions

j : X(Qv) −→ H1(Qv, πp1(X̄, b))

which turn out to be far more computable than the global map. The global and
local maps fit into the following localisation diagram:

X(Q)
∏
vX(Qv)

H1(Q, πp1(X̄, b))
∏
vH

1(Qv, πp1(X̄, b)).

j
∏

v jv

loc

As in the elliptic curve case, our interest is in the interaction between the images
of loc and

∏
v jv. Actual applications use the variant

X(Q)
∏
v∈S X(Qv)

H1(Q, U(X̄, b))
∏
v∈S H

1(Qv, U(X̄, b)).

j
∏

v jv

loc

where S is a suitable finite collection of primes and

U(X̄, b) = ‘πp1(X̄, b)⊗Qp’
is the Qp-pro-unipotent completion of πp1(X̄, b). The effect is that the moduli
spaces become pro-algebraic schemes over Qp and the lower row of this diagram an
algebraic map. That is, the key object of study is

H1
f (Q, U(X̄, b)),

the Selmer scheme of X, defined to be the subfunctor of H1(Q, U(X̄, b)) satisfying
local conditions at all (or most) v. These are conditions like “unramified at most
primes”, “crystalline at p”, and often a few extra conditions. A concrete goal will
be to find an algebraic function

α :
∏
v∈S

H1(Qv, U(X̄, b))→ Q

vanishing on the image of the localisation map. Then

α ◦
∏
v

jv

gives a defining equation for X(Q) inside
∏
v∈S X(Qv). Standard structural con-

jectures on mixed motives (generalised BSD) imply that there exist many functions
α as above (which in turn implies Faltings’ Theorem). To make this concretely
computable, we take the projection

prp :
∏
v∈S

X(Qv) −→ X(Qp)

and try to compute ⋂
α

prp
(
Z(α ◦

∏
v

jv)
)
⊆ X(Qp).

Conjecture 3.9 (Non-Archimedean effective Mordell Conjecture).
I.
⋂
α prp

(
Z(α ◦

∏
v jv)

)
= X(Q)
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II. This set is effectively computable.

Remarks 3.10.
1. As soon as there is one α with αp non-trivial, prp

(
Z(α ◦

∏
v jv)

)
is finite.

2. There is a (highly reliable) conjectural mechanism for producing infinitely
many algebraically independent α.

3. This conjecture is closely related to Grothendieck’s section conjecture
[Sch97]: Rather, the main diagram and the section conjecture give an
effective method of computing X(Q).

Later on, we will describe the methods used to construct these moduli spaces
and functions. But we will first illustrate their utility by way of some examples.

4. Computing rational points: Some examples

There is an obvious modification of the discussion in the previous section that
deals with integral points on affine curves. The first example will take place in
the affine setting since the formulas are very concrete. For X = P1 \ {0, 1,∞},
Dan-Cohen and Wewers [DCW16] have shown that

X(Z[1/2]) = {2,−1, 1/2} ⊆ {D2(z) = 0} ∩ {D4(z) = 0},
where

D2(z) = `2(z) + 1
2 log(z) log(1− z),

D4(z) = ζ(3)`4(z) + 8
7

[
log3(2)/24 + `4(1/2)/ log(2)

]
log(z)`3(z)

+
[

4
21

(
log3(2)/24 + `4(1/2)/ log(2)

)
+ ζ(3)/24

]
log3(z) log(1− z),

and

`k(z) =

∞∑
n=1

zk

nk
.

Numerically, the inclusion appears to be an equality.
There are also some qualitative results:

Theorem 4.1 (Coates and Kim [CK10]). The curve defined by

axn + byn = c

for n ≥ 4 has only finitely many rational points.

There is a remarkable result on modular curves by Balakrishnan, Dogra, Müller,
Tuitmann, Vonk [BDM+19]. They study the curve

X+
s (N) = X(N)/C+

s (N),

where X(N) is the compactification of the moduli space of pairs

(E, φ : E[N ] ' (Z/NZ)2),

and C+
s (N) ⊆ GL2(Z/nZ) is the normaliser of a split Cartan subgroup. Bilu–

Parent–Rebolledo [BPR13] had shown that X+
s (p)(Q) consists entirely of cusps

and CM points for all primes p > 7, p 6= 13. They called p = 13 the “cursed level”.

Theorem 4.2 ([BDM+19]). The modular curve

X+
s (13)

has exactly 7 rational points, consisting of the cusp and 6 CM points.
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Figure 1. The cursed curve, plotted using SageMath by Sachi Hashimoto

The cursed curve X+
s (13) is explicitly given by the equation

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z

− 32x2z2 − 40xyz‘2 + 24y2z2 + 32xz3 − 16yz3 = 0.

The theorem states that

(1 : 1 : 1), (1 : 1 : 2), (0 : 0 : 1), (−3 : 3 : 2), (1 : 1 : 0), (0 : 2 : 1), (−1 : 1 : 0)

is a complete list of its rational points.
This concludes an important chapter of a conjecture of Serre from the 1970s

which postulates that there is an absolute constant A such that

GQ −→ Aut(E[p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.

5. Some speculations on rational points and critical points

This section, which represents a high degree of wishful thinking, should not be
taken too seriously.

We would like to think of

H1(G,U(X̄, b)) −→
∏
v

H1(Gv, U(X̄, b))

as being like
S(M,G) ⊆ A(M,G),

the space of solutions to a set of Euler–Lagrange equations on a space of connections.
In particular, functions cutting out the image of localisation should be thought of as
“classical equations of motion” for gauge fields. When X is smooth and projective,
then X(Q) = X(Z), and we are actually interested in

Im
(
H1(GS , U)

)
∩
∏
v∈S

H1
f (Gv, U) ⊆

∏
v∈S

H1(Gv, U),

where
H1
f (Gv, U) ⊆ H1(Gv, U)



FOUNDATIONS OF THE NONABELIAN METHOD OF CHABAUTY 15

is a subvariety defined by some integral or Hodge-theoretic conditions. Here, S is a
finite set of primes including the primes of bad reduction and p. In order to apply
symplectic techniques, replace U by

T ∗(1)U := (LieU)∗(1) o U.

Then ∏
v∈S

H1(Gv, T
∗(1)U)

is a symplectic variety and

Im
(
H1(GS , U)

)
and

∏
v∈S

H1
f (Gv, U) ⊆

∏
v∈S

H1(Gv, U)

are Lagrangian subvarieties. Thus, the (derived) intersection

DS(X) := Im
(
H1(GS , U)

)
∩
∏
v∈S

H1
f (Gv, U) ⊆

∏
v∈S

H1(Gv, U)

has a [−1]-shifted symplectic structure. Zariski-locally, it is the critical set of a
function [BBJ19].

We have a diagram as follows:

X(Z) j−1
S (DS(X))

∏
v∈S X(Qv)

H1
f (GS , T

∗(1)U) DS(X)
∏
v∈S H

1(Gv, T
∗(1)U)

jg jS jS

locS

From this point of view, the global points can be obtained by pulling back
“Euler–Lagrange equations” via a period map, establishing a connection between
the study of Diophantine equations and Fermat’s principle of least action [Kim18].

6. Covering spaces and fundamental groups

Most of the remainder of these lectures will be concerned with conveying some
intuition for dealing with arithmetic fundamental groups and homotopy classes
of paths. In many senses, it requires us only to think a bit carefully about the
constructions of elementary algebraic topology and how they may be formulated
in a way that makes sense for arithmetic schemes. We will give a few proofs of
elementary facts. This will appear to the reader to be somewhat arbitrary and
imbalanced, since much harder facts will not be proved. For the most part, the
authors would like to believe that the elementary proofs capture the essence of the
harder proofs except for the intervention of more elaborate objects. On the other
hand, we admit that it is also just another manifestation of laziness. In any case,
we start with a brief review.

6.1. Universal covering spaces. LetM be a locally contractible path-connected
topological space.

Definition 6.1. A covering space M ′ → M is a locally trivial fibre bundle with
discrete fibres, i.e. there is a discrete set F and an open covering M =

⋃
Ui for
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which we have a commutative diagram

M ′Ui
F × Ui

Ui

∼

for each i.

Definition 6.2. A universal covering space

π : M̃ −→M

is a covering space with M̃ path-connected and simply connected.

Here is an elementary fact that is surprisingly important to remember: A
universal covering space is not universal in the categorical sense. For any other
covering space M ′ →M , there is a commutative diagram

M̃ M ′

M.

∃

π

However, the diagram is not unique: There is no initial object in the category of
covering spaces.

To remedy the situation, we consider instead pointed covering spaces. Having
chosen a base point b ∈M , a pointed covering space is a map

(M ′, b′)→ (M, b).

Now we choose a point b̃ ∈ M̃b . Then the pair (M̃b, b̃) is indeed an initial object
in the category of pointed universal covering spaces:

(M̃, b̃) (M ′, b′)

(M, b).

∃!

π

Note that the choice of a different c̃ ∈ M̃b will give another initial object (M̃, c̃)

which is uniquely isomorphic to (M̃, b̃).

6.2. Fibre functors. Many readers will have seen fundamental groups defined
via fibre functors. What follows is a brief explanation of how to work with such
definitions by examining them carefully in topology.

Consider the functor

Fb : Cov(M) −→ Sets

M ′ 7−→M ′b,

and its automorphism group
Aut(Fb).

By the definition of a natural transformation, an element γ of this group is a
compatible sequence of bijections

γM ′ : M
′
b
∼= M ′b
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for all covering spaces M ′ → M . The required compatibility is with respect to
maps of covering spaces, i.e. if f : M ′1 → M ′2 is a map of covering spaces, then the
diagram

M ′1,b M ′1,b

M ′2,b M ′2,b

f

γM′1

f

γM′2

commutes:
f ◦ γM ′1 = γM ′2 ◦ f.

The choice of b̃ ∈ M̃b determines a map

Aut(Fb) −→ M̃b

γ 7−→ γM̃ (b̃).

Proposition 6.3. This map is a bijection

Aut(Fb) ∼= M̃b.

Proof. To show injectivity, consider an element γ ∈ Aut(Fb). For any covering
spaceM ′ →M and any b′ ∈M ′b, there is a unique map f : (M̃, b̃)→ (M ′, b′). Thus,

γM ′(b
′) = γM ′(f(b̃)) = f(γM̃ (b̃)),

so the action of γ on M ′b is determined by γM̃ (b̃).
On the other hand, given y ∈ M̃b, we would like to define γ such that γM̃ (b̃) = y.

The point is that there is only one way to do it in a way that is compatible with
maps of covering spaces, and this gives us γM ′ for every M ′ → M . Given any
b′ ∈M ′b, there is a unique fb′ : (M̃, b̃)→ (M ′, b′). Define

γM ′(b
′) = γM ′(fb′(b̃)) = fb′(γM̃ (b̃)) := fb′(y).

The compatibility comes from the commutative triangles

(M̃, b̃) (M ′, b′)

(M ′′, h(b′))

fh(b′)

fb′

h

for every map of covering spaces h : M ′ →M ′′, which imply

h(γM ′(b
′)) = h(fb′(y)) = fh(b′)(y) = γM ′′(h(b′)). �

An identical proof gives us:

Proposition 6.4. For two points b, x ∈ M , the choice of b̃ ∈ M̃b determines a
bijection

Isom(Fb, Fx) ∼= M̃x.

That is, an element p ∈ Isom(Fb, Fx) is determined by pM̃ (b̃), and any y ∈ M̃x

determines such a p. �

Note that Isom(Fb, Fx) is a principal bundle for Aut(Fb). It is an easy exercise
to describe the action of M̃b on M̃x.
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6.3. Homotopy classes of paths. Consider the usual definition of π1(M ; b, x)
using homotopy classes of paths. There is a classical isomorphism

π1(M ; b, x) ∼= Isom(Fb, Fx)

defined via path lifting. That is, a path p : I = [0, 1] → M such that p(0) = b and
p(1) = x acts on the fibres of a covering M ′ →M via the unique lifting diagram

(M ′, b′)

(I, 0) (M, b),

∃! p′

p

i.e. via the rule p · b′ = p′(1). The endpoint p′(1) depends only on the homotopy
class of p because of the discreteness of the fibres. If f : (M ′1, b

′
1) → (M ′2, b

′
2) is a

map of pointed covering spaces, then f ◦ p′1 = p′2 by uniqueness. Thus, path lifting
defines a compatible collection of isomorphisms

pM ′ : M
′
b
∼= M ′x

In particular, loops based at b will act compatibly on all fibresM ′b. The easiest way
to see that this gives an isomorphism

π1(M ; b, x) ∼= Isom(Fb, Fx)

uses the universal covering π : M̃ →M again. Namely, denote by p̃ the lifting of p
to M̃ such that p̃(0) = b̃. In that case we get:

Proposition 6.5. The map p 7→ p̃(1) defines a bijection

π1(M ; b, x) ∼= M̃x.

The inverse is given by mapping y ∈ M̃x to the homotopy class [π ◦ py], where
py is any path in M̃ from b̃ to y. The homotopy class is independent of py since M̃
is simply connected. However, this map clearly factors through

π1(M ; b, x) −→ Isom(Fb, Fx) ∼= M̃x,

proving that the first map is also an isomorphism.
In other words, the choice of base points gives us an expression

M̃ =
⋃
x∈M

π1(M ; b, x).

The fibres of M̃ → M give us a concrete model of path spaces, which generalises
to situations where physical paths are missing.

To summarise, we have the bijections

π1(M ; b, x) ∼= Isom(Fb, Fx) ∼= M̃x,

and the second two objects generalise to other settings.

7. The Tannakian formalism

We review the Tannakian formalism starting with a simple example. Let G be
a finite group and denote by

RepGk
the category of finite-dimensional representations of G on k-vector spaces.
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Definition 7.1. A pointed representation is a pair (V, v) of a representation V and
a vector v ∈ V .

Proposition 7.2. The left-regular pointed representation

(k[G], 1)

is the universal pointed representation of G.

Given any pointed representation (V, v), the unique map (k[G], 1) → (V, v)
sends g to gv.

Let
F : RepGk −→ Vectk

be the forgetful functor to k-vector spaces. Consider the endomorphisms

End(F )

of F . An element a ∈ End(F ) is a compatible sequence of linear transformations
aV : V → V as V runs over representations of G. Compatibility means that for any
map φ : V →W of representations, the following square commutes:

V V

W W.

φ

aV

φ

aW

Proposition 7.3. The map
a 7→ ak[G](1)

defines an isomorphism End(F ) ∼= k[G].

There is an augmentation map e∗ : k[G]→ k, and the diagonal map G→ G×G,
g 7→ (g, g) induces the comultiplication map

∆: k[G] −→ k[G×G] ' k[G]⊗ k[G].

Given representations V and W , the tensor product V ⊗kW is initially a represen-
tation of k[G]⊗ k[G], which is turned into a representation of k[G] via ∆.

Proposition 7.4. The group G itself can be recovered as the group-like elements
of k[G], i.e. a ∈ k[G] such that e∗(a) = 1 and

∆(a) = a⊗ a.
Proposition 7.5. The group G is isomorphic to Aut⊗(F ), the tensor-compatible
automorphisms of the forgetful functor F from RepGk to Vectk.

Here, an element f ∈ Aut(F ) is tensor-compatible if fV⊗W = fV ⊗ fW .
If we let

A = Homk(k[G], k),

then the map
∆∗ : A⊗A ∼= Hom(k[G]⊗ k[G], k) −→ A

gives A the structure of a commutative k-algebra. Of course, we have a natural
embedding

G ↪→ Homk(A, k)

given by evaluation: g 7→ (f 7→ f(g)).

Corollary 7.6.
G = Spec(A)(k) = Homk-alg(A, k).
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8. Arithmetic fundamental groups

We now consider an arithmetic setting as follows:
K: a number field or a finite extension of Qp;
X: a smooth curve over K;
X̄: the base change of X to K;
b, x ∈ X(K) rational points.

The rational points b, x are sometimes viewed as geometric points:

Spec(K) −→ X̄ −→ X.

In the local case, let X be a smooth scheme over OK with good compactification
and generic fibre X, and let Y be the special fibre of X over k = OK/mK .

8.1. Profinite étale fundamental groups. We now introduce the profinite
étale fundamental group. A reference is Szamuely’s book [Sza09].

Denote by
Cov(X̄)

the category of finite étale covering spaces of X̄. There is a fibre functor

Fb : Cov(X̄) −→ FinSet,

(Y → X̄) 7−→ Yb.

Define
π̂1(X̄; b, x) := Isom(Fb, Fx).

Proposition 8.1. There is a ‘universal’ pro-étale cover
'
X = (X̄i)i −→ X̄

with the property that we get a diagram
'
X Y

X̄

∃

for any finite étale cover Y → X̄.

The arrow
'
X → Y is an element of lim−→i

Hom(X̄i, Y ).

Pick a ‘point’ b̃ ∈
'
X, by which we mean a compatible sequence of points

bi ∈ X̄i,b. Then (
'
X, b̃) is a universal pointed pro-étale cover:

Proposition 8.2. We get a diagram

(
'
X, b̃) (Y, bY )

(X̄, b)

∃!

for any pointed finite étale cover (Y, bY )→ (X̄, b).

Furthermore, we have the following:
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Proposition 8.3. The cover (
'
X, b̃) is defined over K. That is, there is a unique

cover
(X̃, b̃) −→ (X, b)

with b̃ rational, whose base change to K is (
'
X, b̃).

Be warned that in spite of the notation, X̃ → X is not the universal cover of X.
The universal cover of X is

'
X −→ X̄ −→ X.

The cover X̃ → X is a K-model of the universal cover of X̄.

Example 8.4. A K-model of the universal pro-étale covering of (Gm, 1) is given
by

G̃m = (Gm
n−→ Gm)n

with basepoint 1.

Example 8.5. For an elliptic curve E/K with base point O ∈ E(K), a K-model
of the universal pro-étale covering of (E,O) is given by

Ẽ = (E
n−→ E)n

with basepoint O.

Theorem 8.6. The map

γ 7→ (γX̄i
(bi)) ∈

'
Xx = X̃x(K)

induces a GK-equivariant isomorphism

π̂1(X̄; b, x) '
'
Xx = X̃x(K).

This isomorphism gives a concrete way of “computing” the action of Gal(K/K)
on π̂1(X̄; b, x). The formal definition of the action on the left is given as follows.
For g ∈ GK and p ∈ π̂1(X̄; b, x), the element g(p) associates to X ′ → X̄ the lower
arrow that makes the diagram commute:

g∗(X ′)b g∗(X ′)x

X ′b X ′x,

g

pg∗(X′)

g

g(p)

that is,
g(p)X′ = g ◦ pg∗(X′) ◦ g−1.

The theorem allows us to largely forget this and focus on the naive action on the
fibres. However, this is somewhat misleading in that to apply this theorem, we
must first have constructed the K-model

(X̃, b̃) −→ (X, b).

Example 8.7 (Continuation of Example 8.4). For (X, b) = (Gm, 1) we have canon-
ical isomorphisms for the fundamental group and path space

π̂1(Gm, 1) = (G̃m)1 = Ẑ(1),

π̂1(Gm; 1, x) = (G̃m)x = (x1/n)n.
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Example 8.8 (Continuation of Example 8.5). For (X, b) = (E,O) an elliptic curve,
we have

π̂1(E,O) = (Ẽ)O = T̂ (E),

π̂1(E;O, x) = Ẽx =
( 1

n
x
)
n
.

There is a general construction as follows: If P → M is a principal G-bundle
and G (left-)acts continuously on a set A, then we can form the associated bundle

P ×G A := [P ×A]/G,

where G acts on the product as (p, a)g = (pg, g−1a). This is a fibre bundle over M
with fibre A which varies according to the variation of P . When ρ : G → H is a
group homomorphism, this construction P ×G H gives a principal H-bundle.

The cover
'
X → X̄

is a principal π̂1(X̄, b)-bundle. The cover
'
X

(p)

=
'
X ×π̂1(X̄,b) π̂

(p)
1 (X̄, b),

which is a principal π̂(p)
1 (X̄, b)-bundle, is the universal pro-p étale cover. In general,

we might try to study the GK-action on π̂1(X̄; b, x) via fibres of suitable quotient
coverings like this. For example, if X is a modular curve, then the tower

XMod −→ X

of modular curves, corresponds to the “modular quotient group” of π̂1(X̄, b).
Given a continuous Qp-representation V of π̂1(X̄, b), we get a locally constant

sheaf of Qp-vector spaces
'
X ×π̂1(X̄,b) V,

giving a functor
Rep

Qp

π̂1(X̄,b)
−→ LocQp(X̄)

which is inverse to the fibre functor

Fb : L 7→ Lb.
This is a version of the “vector bundle associated to a principalG-bundle and a linear
representation of G”, familiar from usual geometry. However, to do this carefully
in this case, you need to construct the correspondence with finite coefficients first
and then consider projective systems. (This is where the continuity is needed.)

8.2. Unipotent fundamental groups. We now introduce unipotent funda-
mental groups, obtained by linearising categories. A reference is [Del89].

Let
Un(X̄,Qp)

be the category of unipotent Qp-locally constant sheaves on the étale site of X̄.

Definition 8.9. A local system F is unipotent if it admits a filtration

F = F0 ⊃ F1 ⊃ . . . ⊃ Fn = 0

such that
F i/F i+1 ' (Qp)riX̄

for each i. With this notation, we say F has index of unipotency ≤ n.
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Theorem 8.10. There is a universal pointed pro-object in Un(X̄,Qp). This is
a projective system

(E , v) = ((En, vn))n

with vn ∈ (En)b such that for any F ∈ Un(X̄,Qp) and w ∈ Fb, there is a unique
map

f : (E , v) −→ (F , w).

Here,
Hom((E, v), (F,w)) = lim−→Hom((En, vn), (F,w)).

The En as above corresponds to the representation

En,b = En := (Zp[[π̂1(X̄, b)]]/In+1)⊗Qp,
where I ⊆ Zp[[π̂1(X̄, b)]] is the augmentation ideal, and vn = 1. We put

E = lim←−
n

En = lim←− (Zp[[π̂1(X̄, b)]]/In+1)⊗Qp.

We think of this as non-commutative power series in γ− 1, where γ are topological
generators of π̂1(X̄, b). It contains elements like

γa = exp(a log(γ))

for a ∈ Qp.
The pointed local system (En, vn) is universal among unipotent local systems

of index of unipotency ≤ n. Thus we get unique compatible system of maps

Em+n → Em ⊗ En
that send vm+n to vm ⊗ vn. These come together to a map

∆: E −→ E⊗̂E .
Using the fibre functor

Fb : Un(X̄,Qp) −→ VectQp
,

we now define

U ét := U(X̄, b) := Aut⊗(Fb),

P ét(x) := P (X̄; b, x) := Isom⊗(Fb, Fx).

Lemma 8.11. There is a canonical isomorphism

End(Fb) ∼= Eb.

Theorem 8.12. The pro-algebraic group U(X̄, b) is isomorphic to the group-
like elements in Eb, while P (X̄; b, x) is given by the group-like elements in Ex.

There is a sloppiness in the statement that we will not dwell on. We should
be referring in all this to the Qp-points of U(X̄, b) rather than the group itself. To
remedy this, we can transport the discussion to one over an arbitrary Qp-algebra
and make the corresponding statement for the functor of points.

In fact, the lower central series

U = U1 ⊃ U2 ⊃ U3 ⊃ . . .
is compatible with the filtration by In, so that Un = U/Un+1 are the group-like
elements in En.

Put
A = Hom(E ,Qp) = lim−→Hom(En,Qp).
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Then A is a sheaf of Qp-algebras via ∆∗.

Corollary 8.13. There are canonical isomorphisms

U(X̄, b) = Spec(Ab),
P (X̄; b, x) = Spec(Ax).

Remarks 8.14. Some remarks on Galois actions:
(1) The action on P (X̄; b, x) is induced by the action on Ex.
(2) The action on Ex uses

'
X ⊗π̂1(X̄,b) E.

(3) The action on
'
Xx is given by a cocycle

cx : GK −→ π̂(X̄, b).

That is, choose x̃ ∈
'
X. Then cx is defined by

g(x̃) = x̃cx(g)

and satisfies cx(g1g2) = c(g1) · g1c(g2). Then Ex can be identified with E
where the action is twisted:

gxv = cx(g)gv.

The following are some basic structural facts. The map

g 7→ [g − 1]

induces an isomorphism

H1(X̄,Qp) = π̂1(X̄, b)ab ⊗Qp ∼= I/I2.

The multiplication map
(I/I2)⊗n −→ In/In+1

induces an isomorphism
H⊗n1 /Kn ' In/In+1

where Tn := H⊗n1 /Kn ' (Rn)∗, and Rn ⊂ (H1)⊗n is defined inductively as follows.

R0 = Qp,
R1 = H1,

R2 = Ker(H1 ⊗H1 γ1:=∪−→ H2).

We will have Rn+1 ⊂ Rn ⊗H1. Define the map γn inductively as

γn : Rn ⊗H1 → Rn−1 ⊗H1 ⊗H1 → Rn−1 ⊗H2,

and define

Rn+1 = Ker(γn).

This comes from a different tautological construction [AIK15, Fal07, Fal12].
We have an isomorphism

Ext1
X̄((Qp)X̄ , (H1(X̄))X̄) ' H1(X̄)⊗H1(X̄) = Hom(H1, H1).

So there is an extension

0 −→ H1(X̄) −→ E1 −→ Qp −→ 0

corresponding to the identity map on the right. Now we get an exact sequence
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HomX̄(H1,Qp)

Ext1
X̄(Qp,Qp) Ext1

X̄(E1,Qp) Ext1
X̄(H1,Qp)

Ext2
X̄(Qp,Qp).

δ

δ

This can be written as

H1 δ−→ H1 −→ Ext1
X̄(E1,Qp) −→ H1 ⊗H1 δ−→ H2,

which induces the isomorphism

Ext1
X̄(E1,Qp) ∼= R2 ∼= T ∗2 .

Hence,

Ext1
X̄(E1, T2) ∼= Hom(T2, T2, )

so that there is an extension

0 −→ T2 −→ E2 −→ E1 −→ 0

corresponding to the identity on the right. One continues in this way and the
universal property can also be proved in a tautological manner. The idea is as
follows: When the index of unipotency is 1, we have a constant sheaf VX̄ → X̄. Of
course, there is a unique map

f1 : [Qp]X̄ −→ VX̄

that takes 1 ∈ Qp = [Qp]X̄,b to any fixed v ∈ V = VX̄,b. Now suppose you have

0 −→W −→ F −→ V −→ 0

with V and W constant. We would like to construct a lift f2 as below

0 T1 E1 Qp 0

0 W F V 0.

f2 f1

The idea is to pull back by f1 to get

0 −→W −→ f∗1F −→ Qp −→ 0.

We would like to show that this comes from E1 via a push-out along a map φ : T1 →
W . But this extension is a class

c ∈ Ext1
X̄(Qp,W ) = H1 ⊗W.

Meanwhile, E1 corresponds to the class

I =
∑
i

bi ⊗ bi ∈ Ext1(Qp, H1) = H1 ⊗H1,

where {bi} is a basis for H1 and {bi} is the dual basis. Write c =
∑
i b
i ⊗ wi, and

define φ to be the linear map that takes bi to wi.
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8.3. De Rham fundamental groups. We now introduce de Rham funda-
mental groups. Let us fix the following notation:

F : a finite extension of Qp
X: a smooth curve over F
X̄: the basechange of X to F̄
b, x ∈ X(F ): rational points, viewed sometimes as geometric points

Spec(F̄ )→ X̄ → X

X : a smooth scheme over OF , the valuation ring of F , with good compacti-
fication and generic fibre X

Y : the special fibre of X over the residue field k = OF /mF .
The de Rham version is similar to the étale case [Hai87a, AIK15, Kim09]. The
relevant category is

UnDR(X) ⊂ LocDR(X),

the category of unipotent vector bundles with (flat) connection, a full subcategory
of all bundles with flat connection. There are fibre functors

Fb : UnDR(X) −→ VectF ,

(V,∇) 7−→ Vb,

and the objects of interest are

UDR := UDR(X, b) := Aut⊗(Fb),

and
PDR(x) := UDR(X; b, x) := Isom⊗(Fb, Fx).

They can be constructed using universal objects which in turn admit a tautological
construction [AIK15] using

ExtiLocDR(X)((V,∇), (W,∇)) ' Hi
DR(X, (V,∇)∗ ⊗ (W,∇)),

where
Hi

DR(X, (V,∇)) = Hi(XZar, V → V ⊗OX
ΩX).

In particular, the universal object EDR is a projective system of objects

(EDR
n ,∇n)

which fit together as

0 −→ TDR
n ⊗OX −→ EDR

n −→ EDR
n−1 −→ 0.

Here, TDR
n is a quotient of (HDR

1 )⊗n as in the étale case.
After choosing an element 1 ∈ EDR

b , we get the universal property:

Proposition 8.15. Given any object (V,∇V ) in UnDR(X) together with an element
v ∈ Vb (the fibre at b), there exists a unique morphism φ : (EDR,∇)→ (V,∇V ) such
that 1 ∈ EDR

b 7→ v.

Corollary 8.16. There is a canonical isomorphism

End(Fb) ∼= EDR
b .

Theorem 8.17. The pro-algebraic group UDR(X, b) is isomorphic to the group-
like elements in Eb, while PDR(X; b, x) is isomorphic to the group-like elements in
Ex.
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The universal property gives rise to a map of pro-objects in UnDR(X)

∆: (EDR,∇) −→ (EDR,∇)⊗̂(EDR,∇)

which takes 1 to 1⊗1. Let ADR = (EDR)∗ be the dual (ind-)bundle. Then ∆∗ gives

ADR
x = Hom(EDR

x , F )

the structure of a commutative algebra, and we have

PDR(x) = Spec(ADR
x ).

8.3.1. The Hodge filtration. For this section, we will assume for simplicity that
X is projective. Otherwise one must consider logarithmic connections on the
compactification. The universal bundle EDR carries a Hodge filtration [Hai87a,
Woj93, Vol03, Had11, Kim09]. This is the unique decreasing filtration F i,
i ≤ 0 of EDR satisfying the following conditions:

(1) Griffiths transversality: ∇(F i) ⊂ F i−1 ⊗ ΩX ;
(2) The induced filtration on TDR

n coincides with the constant one coming
from (co)homology;

(3) 1 ∈ F 0EDR
b .

There is an induced Hodge filtration with non-negative degrees on ADR and
F 1ADR is an ideal. One defines F 0PDR(x) to be the zero set of F 1ADR

x . It is a
torsor for F 0UDR, which is a subgroup of UDR. This is an aspect of the fact that
the action of UDR on PDR(x) is compatible with the Hodge filtration. Namely, the
action map

PDR(x)× UDR −→ PDR(x)

corresponds to a co-action map

ADR
x −→ ADR

x ⊗ADR
b ,

and this is compatible with the Hodge filtration.
The choice of a point p ∈ F 0PDR(x) gives an algebra homomorphism ADR

x → F
which kills F 1ADR

x , which is hence a map of Hodge structures. Thus, we get an
isomorphism

ADR
x
∼= ADR

b

that is compatible with the Hodge filtration. A dimension count then shows that

F 1ADR
x
∼= F 1ADR

b ,

and hence
ADR
x /F 1ADR

x
∼= ADR

b /F 1ADR
b ,

giving us
F 0UDR ∼= F 0PDR(x).

8.3.2. Crystalline structures. In addition to the Hodge filtration, de Rham fun-
damental group also carries a crystalline structure. The (k-linear) Frobenius φ of the
special fibre Y acts on the category UnDR(X) [Del89, Bes02]. Write X =

⋃
i Ui

such that Ui is affine and a smooth lift of Ui ⊗ k. Choose local lifts φi on Ui of the
Frobenius on Ui⊗ k. Then, given a bundle with connection (V,∇), we consider the
local pullbacks (φ∗i (V |Ui

), φ∗i (∇)). The connection allows us to patch these together
canonically to give us φ∗(V,∇).

In particular, the Frobenius φ defines an isomorphism

(EDR,∇, 1) −→ (φ∗EDR, φ∗∇, φ∗1).
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We get compatible actions on UDR(X, b) and PDR(X; b, x). On Tn, it agrees with
the action induced by the isomorphism

H1
DR(X) ∼= H1

crys(Y ).

Hence, the eigenvalues are the same as the ones coming from étale cohomology.

Theorem 8.18. There is a unique Frobenius-invariant element pcr
b,x in P

DR(X; b, x).

Lemma 8.19. The Lang map L(φ) : UDR → UDR that sends u to uφ(u)−1 is a
bijection. In particular, the identity is the only element fixed by φ.

Proof. The eigenvalues of φ on TDR
n = UDR,n/UDR,n+1 are all different

from 1. �

Proof of Theorem 8.18. Choose p ∈ PDR(X; b, x). Then there is a unique
u ∈ UDR such that φ(p) = pu. Write u = vφ(v)−1, this is possible by Lemma 8.19.
Then

φ(pv) = pv.

Uniqueness comes from the fact that if p is fixed, no pu will be fixed for u 6= 1. �

It is better to think in terms of crystalline fundamental groups: Given a point
y ∈ Y (k), define on UnDR(X) the fibre functor

(V,∇) 7→ V (]y[)∇=0,

the flat sections of V over the tube ]y[, the analytic space of points that reduce to y.
Then for x, x′ ∈]y[, the Frobenius-invariant element pcr

x,x′ is given by the diagram

V (]y[)∇=0

Vx Vx′ .

∼= ∼=

This is supplemented by an isomorphism

pcr
y,y′ : V (]y[)∇=0 ∼= V (]y′[)∇=0

for y, y′ ∈ Y (k), called Coleman integration [Bes02]. The computation of this is
Kedlaya’s theory.

8.3.3. De Rham moduli space. The space of torsors for UDR that have compat-
ible Frobenius and Hodge filtration are classified by

UDR/F 0.

The bijection is given as follows. Given a torsor T , there exists a unique Frobenius-
invariant element tcr. Choose tH ∈ F 0T and write

tH = tcrucr
T .

The element ucr
T is independent of the choice of tH up to multiplication by F 0UDR

on the right, giving us a well-defined element

[ucr
T ] ∈ UDR/F 0.
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8.3.4. Explicit description. We will give an explicit description of the de Rham
fundamental group for X affine [Kim09]. We first choose

α1, α2, . . . , αm,

global algebraic differential forms representing a basis of H1
DR(X). Thus, m =

2g + s− 1, where s is the number of missing points. Consider the algebra

F 〈A1, . . . , Am〉
generated by the (non-commuting) symbols A1, A2, . . . , Am. Thus, it is the tensor
algebra of the F -vector space generated by the Ai. Let I be the augmentation
ideal. The algebra F 〈A1, . . . , Am〉 has a natural comultiplication map ∆ with values
∆(Ai) = Ai ⊗ 1 + 1⊗Ai. Now let

En = F 〈A1, . . . , Am〉/In+1

and take the completion

E := lim←−
n

F 〈A1, . . . , Am〉/In.

The comultiplication ∆ extends naturally to a comultiplication E → E⊗̂E.
Let E be the pro-unipotent pro-vector bundle E ⊗OX with the connection ∇E

determined by
∇Ef = df −

∑
i

Aifαi

for sections f : X → E. There is the distinguished element 1 ∈ Eb = E.

Theorem 8.20. There is a unique isomorphism

(E ,∇E , 1) ∼= (EDR,∇, 1).

It is compatible with the comultiplication on either side.

The theorem is an easy consequence of the following:

Lemma 8.21. Let (V,∇) be a unipotent bundle with flat connection on X of rank r.
Then there exist strictly upper-triangular matrices Ni such that

(V,∇) ' (OrX , d+
∑
i

αiNi).

The isomorphism

E(]y[)∇=0

Eb Ex.

∼= ∼=

for b and x in the same tube ]y[ can be constructed locally by solving differential
equations. Let

f =
∑
w

fw[w]

be a section of E , where [w] are words in the Ai, and f(b) = 1. Then the flatness
condition is

df =
∑
w

∑
i

fwαi[Aiw],
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that is
dfAiw = fwαi

for all w and i. We solve this iteratively:

fAi
(z) =

∫ z

b

αi.

This can be constructed as a power series with initial condition fAi(x) = 0. We
continue with

fAjAi
(z) =

∫ z

b

fAi
αj ,

and so on. Thus, the components of f become iterated integrals. Having solved
the equation with initial condition 1, we get pcr

b,x for v ∈ EDR
b by

pcr
b,x(v) = f(x)v.

For general x, the components of pcr
b,x give the definition of iterated integrals.

The shuffle identities for iterated integrals,∫ x

b

ω1 · · ·ωk
∫ x

b

ωk+1 · · ·ωn =
∑
σ

∫ x

b

ωσ(1) · · ·ωσ(n),

with the sum running over (k, n−k)-shuffles of {1, 2 . . . , n}, follow from the group-
like nature of pcr

b,x.
Another way to say this is that

ADR
x = F [φw],

the vector space generated by φw such that φw[w′] = δww′ . The algebra structure
is given by

φwφw′ =
∑
σ

φσ(ww′)

where again the σ run over shuffles. The iterated integral identity is the fact that

pcr
b,x : ADR

x −→ F

is an algebra homomorphism.

Theorem 8.22. The map

jDR : X(F ) −→ UDR/F 0

which sends x to the element (pcr
b,x)−1pHb,x representing the path torsor PDR(x), has

the property that jDR(]y[) is Zariski dense for each y ∈ Y (k).

The idea is to show that all iterated integrals are algebraically independent
using transcendental methods. Hence, as we increase n, the coordinates of the map
jDR : X(F )→ UDR/F 0 keep giving genuinely new analytic functions.

9. Geometry of non-abelian cohomology

9.1. Non-abelian cohomology functors. Fix the following notation:
X/Q: a smooth curve,

p: a prime of good reduction,
U = U(X̄, b), the Qp-prounipotent étale fundamental group,
Un = U/Un+1 the nth quotient of the lower central series,
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G: either the group Gp = Gal(Qp/Qp) or GT = Gal(QT /Q), where QT is the
maximal extension of Q unramified outside a finite set T of primes. We
assume that T contains ∞, p, and all primes of bad reduction.

Following [Kim05], we define a functor of Qp-algebras

R 7→ H1(G,Un(R)) := Un(R)\Z1(G,Un(R)).

The H1 refers to continuous cohomology: Z1 denotes the continuous functions
f : G→ U(R) such that

f(g1g2) = f(g1) g1(f(g2))

on which Un(R) acts via
fu(g) = uf(g)g(u−1).

The G-action on Un(R) is defined by identifying

Un ∼=
log

Ln := Lie(Un).

In fact, it is often good to think of Un as being Ln with group law defined by the
Baker–Campbell–Hausdorff formula:

X · Y = X + Y + 1
2 [X,Y ] + 1

12 [X, [X,Y ]]− 1
12 [Y, [Y,X]] + . . . ,

the formula for log(exp(X) exp(Y )). Then Un(R) = Ln ⊗ R. The topology on
Un(R) is defined by using

Un ∼= AN ,
which gives

Un(R) ∼= RN .

We give RN the inductive limit topology of finite-dimensional Qp-subspaces. (This
definition works also for all affine schemes.)

On the abelian pieces Un/Un+1, the same definition of H1 applies, but we can
also define H2.

Proposition 9.1. For i = 1, 2, we have a canonical isomorphism

Hi(G,Un/Un+1(R)) ∼= Hi(G,Un(Qp)/Un+1(Qp))⊗R.

That is, the functor of R can be represented by the finite-dimensional Qp-vector
space Hi(G,Un(Qp)/Un+1(Qp)).

Theorem 9.2. The functor

R 7→ H1(G,Un(R))

is represented by an affine Qp-scheme of finite type.

The scheme represents principal Un-bundles with continuous G-action: The
R-points are principal (Un)R-bundles

P −→ Spec(R)

with functorial continuous action of G on P (S) for any R-algebra S.

Proof of Theorem 9.2. The proof is by induction on n using the exact se-
quence



32 MINHYONG KIM AND MARTIN LÜDTKE

0 H1(G,Un/Un+1(R)) H1(G,Un(R)) H1(G,Un−1(R))

H2(G,Un/Un+1(R)).

δ

That is, once H1(G,Un−1) is representable, δ is a map of schemes. The exact
sequence means that H1(G,Un) defines an H1(G,Un/Un+1)-torsor over Ker(δ),
which then must by represented by

Ker(δ)×H1(G,Un/Un+1). �

In the local case, we define also

R 7→ H1(Gp, Un(Bcris ⊗R))

with Fontaine’s period ring Bcris, and

H1
f (Gp, Un) = Ker

(
H1(Gp, Un)→ H1(Gp, Un(Bcris))

)
,

which is a subscheme by induction on n:

0 H1(Gp, U
n/Un+1) H1(Gp, Un) H1(Gp, Un−1)

0 H1(Gp, U
n/Un+1(Bcris)) H1(Gp, Un(Bcris)) H1(pG,Un−1(Bcris))

The schemeH1
f (Gp, Un) represents torsors that have aGp-invariant point in Un(Bcris).

We call them crystalline torsors.
We have the localisation map

locp : H1(GT , Un) −→ H1(Gp, Un),

which we use to define

H1
f (GT , Un) := loc−1

p (H1
f (Gp, Un)).

Thus, we get a diagram

X(Z) X(Zp)

H1
f (GT , Un) H1

f (Gp, Un).

Here, we are being imprecise in that the integral points belong to a model X of X,
which we suppress for the sake of notational simplicity. The bottom arrow is a map
of schemes since it represents a map of functors. It is a computable replacement for
X(Z) ⊂ X(Zp).

The reasonX(Zp) maps toH1
f ⊂ H1 is because of the non-abelian p-adic Hodge

theory isomorphism

P ét
n (x)(Bcris) ∼= PDR(x)(Bcris) ∼= BNcris

for x ∈ X(Zp). The first isomorphism respects all structures, while the second is
Galois equivariant, showing the existence of an invariant point.
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9.2. Étale-de Rham comparison. Given a crystalline torsor P = Spec(O(P ))
for U , then

D(P ) := Spec([O(P )⊗Bcris]
Gp)

is a torsor for UDR with Hodge filtration and Frobenius structure [Kim05, Kim12b,
Kim09], and those are classified by UDR/F 0, as discussed in Section 8.3.3. This is
an application of the Dieudonné functor.

Lemma 9.3. The functor P 7→ D(P ) defines an isomorphism

H1
f (Gp, U) ∼= UDR/F 0.

An inverse is constructed using the fundamental exact sequence of p-adic Hodge
theory:

0 −→ Qp −→ Bφ=1
cris ⊕B

+
DR −→ BDR −→ 0.

From this we get

U(BDR)/U(B+
DR) −→ H1(Gp, U) −→ H1(Gp, U(Bφ=1

cris )).

The left term is the Qp-points of UDR/F 0. We get an equality between

H1
e (Gp, U) = Ker[H1(Gp, U) −→ H1(Gp, U(Bφ=1

cris ))]

and
H1
f (Gp, U) = Ker[H1(Gp, U) −→ H1(Gp, U(Bcris))].

10. The fundamental diagram

Reference: [Kim05]

From here on, we assume that X is a smooth proper curve of genus ≥ 2. We
will focus on the base field Q, even though Netan Dogra has generalised all the
arguments to number fields [Dog20]. The following diagram is fundamental in
non-abelian Chabauty theory:

X(Q) X(Qp)

H1
f (GT , Un) H1

f (Gp, Un) UDR/F 0.

j
jDR

jp

locp
∼=
D

Conjecture (A). The image of locp is non-dense for n� 0.

Theorem 10.1. Assuming the conjecture, X(Q) is finite.

Proof. By assumption, there is an algebraic function α 6= 0 that vanishes on
D(locp(H

1
f (GT , Un))). Hence

α ◦ jDR|X(Q) = 0.

But α◦jDR is a non-zero convergent power series on each tube ]y[⊆ X(Zp) = X(Qp)
for y ∈ Y (Fp). So the zero set is finite. �

Definition 10.2 ([BDCKW18]). For n ≥ 1, define

X(Qp)n :=
⋂

α◦D◦locp=0

Z(α ◦ jDR)

= (jDR)−1
(
D(locp(H1

f (GT , Un)))
)
.
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Since the diagrams are compatible over n, we get a decreasing filtration:

X(Qp) ⊃ X(Qp)1 ⊃ X(Qp)2 ⊃ X(Qp)3 ⊃ X(Qp)4 ⊃ . . .

The set of rational points X(Q) is contained in X(Qp)n for all n. Note that Con-
jecture (A) actually implies that X(Qp)n is finite for n� 0.

Conjecture (B). ⋂
n

X(Qp)n = X(Q).

Conjecture (C). The sets X(Qp)n are computable and Conjecture 3.9 is
computationally verifiable.

The key problem is to find defining equations for

locp(H
1
f (GT , Un)) ⊂ H1

f (Gp, Un).

One might very speculatively ask if there are canonical equations related to non-
abelian L-functions. For example, is there a canonical trivialisation

RΓc(GT , U) ∼L 0

is a suitable homotopy category? This should be similar to the annihilation of
Selmer groups by p-adic L-functions [CK10] or Iwasawa’s theorem on the image of
global units in local units of cyclotomic fields [CS06].

10.1. Refined nonabelian Chabauty. We shall describe a variant of the
fundamental diagram for affine curves which is due to Betts–Dogra [BD19]. As-
sume that Y = X \D where X/Q is a smooth proper curve (of any genus) and D
is a reduced divisor of points at infinity. We assume that Y is hyperbolic, i.e.

χ(Y ) := 2− 2g − r < 0,

where g is the genus and r = #D(Q) is the number of points at infinity. Thus, YQ
is either

(1) P1 minus at least three points;
(2) a genus one curve minus at least one point;
(3) a higher genus curve with arbitrarily many points removed.
In the affine case we are interested in integral points rather than rational points.

More precisely, let S be a finite set of primes and let ZS be the ring of S-integers,
i.e. the subring of Q consisting of rational numbers whose denominators are only
divisible by primes from S. Assume that we have a regular S-integral model Y =
X \D for Y = X \D, by which we mean that Y is presented as the complement of
a horizontal divisor D in a flat proper regular ZS-scheme X .

Theorem 10.3 (Faltings, Siegel). The number of S-integral points of Y is finite:

#Y(ZS) <∞.

Let p 6∈ S be a prime of good reduction. Assume that we are given an S-integral
base point b of Y . This is either an S-integral point of Y or a tangential base point,
i.e. a nowhere vanishing section of the tangent bundle at an S-integral point at
infinity. As before, U = U(Y , b) denotes the Qp-prounipotent étale fundamental
group, and Un denotes the nth quotient of its lower central series. For any other
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S-integral point y ∈ Y(ZS), we have a principal Un-bundle Pn(y) := Pn(Y ; b, y)
with continuous GQ-action. This defines the non-abelian Kummer map

jS : Y(ZS)→ H1(GQ, Un),

given by y 7→ [Pn(y)]. The S-integrality of y ensures that we land in a subset
defined by local conditions which we now describe.

For any prime `, we have a commutative diagram of the global and local non-
abelian Kummer maps:

Y(ZS) Y (Q`)

H1(GQ, Un) H1(G`, Un).

jS j`

loc`

Here, Y (Q`) can be replaced with Y(Z`) for ` 6∈ S. As in the projective case, the
local cohomology set H1(G`, Un) is the set of Qp-points of an affine Qp-scheme of
finite type.

Definition 10.4 (Betts–Dogra). A cohomology class ξ ∈ H1(GQ, Un) is locally
geometric (with respect to Y/ZS) if for all primes ` (including p), the localisation
loc`(ξ) is contained in {

j`(Y(Z`))Zar, if ` 6∈ S,
j`(Y (Q`))Zar, if ` ∈ S,

where (−)Zar denotes Zariski closure inside H1(G`, Un). The refined Selmer scheme
Selmin

S,Un
(Y) represents the subfunctor of R 7→ H1(GQ, Un(R)) given by locally geo-

metric cohomology classes.

The refined Selmer scheme is an affine Qp-scheme of finite type. The compat-
ibility of local and global Kummer maps ensures that jS maps S-integral points
into Selmin

S,Un
(Y).

The local Kummer map j` can be described quite explicitly in many cases.
• If ` 6∈ S ∪ {p}, then j`(Y(Z`)) is finite [KT08]. If moreover ` is of good

reduction for Y, then j`(Y(Z`)) ⊆ {∗} contains at most the trivial point.
(If the base point b is tangential, it can happen that Y does not admit
any Z`-integral points, in which case j`(Y(Z`)) is empty.)
• For ` ∈ S, the dimension of j`(Y (Q`))Zar is at most 1. The point j`(y)

depends only on the image of y on the stable reduction graph of Y [BD19].
• If ` = p, then the assumption that p 6∈ S is a prime of good reduction

implies that j`(Y(Zp))Zar, if not empty, equals H1
f (Gp, Un), the subscheme

of crystalline cohomology classes [Kim09].
The fundamental diagram for the refined Selmer scheme looks as follows:

Y(ZS) Y(Zp)

Selmin
S,Un

(Y) H1
f (Gp, Un) UDR/F 0.

jS
jDR

jp

locp
∼=
D

As in the projective case we conjecture:
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Conjecture (A’). The image of locp is non-dense for n� 0.

If locp is non-dense for some n, then we obtain an algebraic function α 6= 0 on
UDR/F 0 vanishing on D(locp(Selmin

S,Un
(Y))). Its pullback to Y(Zp) along jDR is then

given by a non-zero convergent power series on each tube ]y[⊆ Y(Zp) for y ∈ Y(Fp),
and its finite vanishing locus contains Y(ZS).

Definition 10.5. For n ≥ 1, define

Y(Zp)min
S,n :=

⋂
α◦D◦locp=0

Z(α ◦ jDR).

For increasing n, the vanishing loci Y(Zp)min
S,n form a decreasing sequence of

subsets of Y(Zp):

Y(Zp) ⊃ Y(Zp)min
S,1 ⊃ Y(Zp)min

S,2 ⊃ Y(Zp)min
S,3 ⊃ . . . ,

all of which contain the set of S-integral points Y(ZS). The finiteness of Y(ZS)
would thus be implied by Conjecture (A’). We conjecture moreover that for suffi-
ciently large n, the refined nonabelian Chabauty method yields precisely the set of
ZS-integral points:

Conjecture (B’).
∞⋂
n=1

Y(Zp)min
S,n = Y(ZS).

The refined nonabelian Chabauty method can be made effective in some cases.
The best-studied example is Y = P1 \ {0, 1,∞}. For the thrice-punctured line,
Conjecture (A’) was shown in [Kim05], even without the local geometricity con-
dition at primes contained in S. Explicit equations for the loci Y(Zp)min

S,n have
been obtained in a number of cases. The case 2 6∈ S is somewhat trivial since
Y(F2) = P1(F2) \ {0, 1,∞} = ∅, so that the local geometricity condition at 2 is
unsatisfiable and all Y(Zp)min

S,n are empty, thus correctly detecting the emptiness of
Y(ZS). In nontrivial cases, the obtained equations are given in terms of the p-adic
polylogarithm `k(z), which is given near zero by

`k(z) =

∞∑
n=1

zk

nk
.

The following results were obtained by a project group at the Arizona Winter
School 2020 [BBK+21]:

• S = {2}. Here we have

Y(Z[1/2]) ⊆ S3.
(
{log(z) = 0} ∩ {`2(z) = 0}

)
,

where S3.(−) denotes the closure under the two operations z 7→ 1/z and
z 7→ 1 − z. Conjecture (B’) has been verified numerically for primes
p < 105. This is a refinement of results of Dan-Cohen–Wewers [DCW15].

• S = {2, q} for odd primes q. Here we have

Y(Z[1/2q]) ⊆ S3.
{
a2,q `2(z) = aq,2 `2(1− z)

}
,

for certain p-adic constants a2,q, aq,2 ∈ Qp which are related by the iden-
tity a2,q + aq,2 = log(2) log(q). There is an algorithm for expressing these
constants as Q-linear combinations of p-adic polylogarithms, which is im-
plemented in SAGE [KLS21]. Conjecture (B’) is proved for p = 3 if q > 3
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is a Mersenne or Fermat prime or (by numerical verification) if q is one of
the following primes:

19, 37, 53, 107, 109, 163, 181, 199, 269, 271, 379,

431, 433, 487, 523, 541, 577, 593, 631, 701, 739,

757, 809, 811, 829, 863, 883, 919, 937, 971, 991.

Moreover, upcoming work of Betts–Kumpitsch–Lüdtke, refining calculations of
Corwin–Dan-Cohen [CDC20], shows that for S = {2} we have

Y(Z[1/2]) ⊆ S3.
(
{log(z) = 0} ∩

⋂
k≥2 even

{`k(z) = 0}
)
.

Conjecture (B’) is proved to hold for all odd primes p by showing that we have
Y(Zp)min

{2},n = Y(Z[1/2]) whenever n ≥ p− 3.

*

It is hoped that the patient reader will have attained by now some overall sense
of Selmer schemes and their applications. The remaining lectures cover a collection
of complementary topics on Diophantine applications of non-abelian fundamental
groups. The exposition will be brief and even more superficial than the previous
sections.

11. Effectivity and the section conjecture

Reference: [Kim12a].

We return to the setting where X/Q is a smooth proper curve of genus ≥ 2
and U = U(X̄, b) is its Qp-prounipotent étale fundamental group. Assume the
following:

(1) The map
H1
f (GT , Un) −→ UDR

n /F 0

can be effectively computed.

(2) Using (1), we can compute an effective lower bound for the p-adic distances
between the points in X(Q) ⊂ X(Qp).

Thus, we get an effective M such that X(Q)→ X(Z/pM ) is injective.
Using this, we get an effective N , for example N = |J(Z/pM )|, where J
is the Jacobian of X, such that

X(Q) ⊂ J(Q) ⊂ J(Z)/NJ(Z) ↪→ H1(GS , J [N ])

is injective, where S is the set of all places of bad reduction and the primes
dividing pN .

(3) Grothendieck’s section conjecture [Gro97]:

X(Q) ∼= H1(GQ, π̂1(X̄, b)).

Note that for elliptic curves, one conjectures

E(Q)⊗ Zp ∼= H1
f (GQ, π̂1(Ē, b)(p)).

Let n be larger than N and all the primes in S. We use the following notation:
• G = Gal(Q/Q) and Gn = π̂1(Spec(Z[1/n!]))
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• ∆ = π̂1(X̄, b), and Kn is the intersection of all open subgroups of index
≤ n. (There are only finitely many, and Kn is normal.)

• ∆(n) = ∆/Kn. Thus, the prime divisors of the order of any element in
∆(n) are ≤ n.

• Denote by π(n) the quotient of π̂1(X, b) by Kn, so that we have a pushout
diagram:

0 ∆ π̂1(X, b) G 0

0 ∆(n) π(n) G 0.

There is a pullback diagram

0 ∆(n) π(n) G 0

0 ∆(n) π̂1(Xn, b)/Kn Gn 0

where Xn is a smooth projective model for X over Spec(Z[1/n!]). Hence, any point
x ∈ X(Q) defines a class in H1(Gn,∆(n)).

We have a commutative diagram

X(Q) H1(G,∆)

H1(Gn,∆(n)) H1(G,∆(n))

and hence and sequence of subsets

H1(G,∆)n

consisting of classes whose images in H1(G,∆(n)) come from H1(Gn,∆(n)). Thus,
we have diagrams

H1(G,∆)n H1(G,∆)

H1(Gn,∆(n)) H1(G,∆(n))

H1(GS , J [N ]) H1(Gn, J [N ])

and

H1(Gn+1,∆(n+ 1))

H1(Gn,∆(n)) H1(Gn+1,∆(n))

H1(GS , J [N ]) H1(Gn, J [N ]) H1(Gn+1, J [N ]).
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Using this, we can define a decreasing sequence of subsets

H1(GS , J [N ])n+1 ⊂ H1(GS , J [N ])n

consisting of those classes whose images in H1(Gi, J [N ]) lift to H1(Gi,∆(i)) for all
i ≤ n, i larger than n0 = sup(N, p ∈ S).

Meanwhile, there is an increasing sequence of subsets X(Q)n of points whose
heights are ≤ n, all of which occur in the “non-abelian descent sequence”:

. . . ⊂ X(Q)n ⊂X(Q)n+1 ⊂ X(Q)n+2 ⊂ . . .
. . . ⊂ H1(GS , J [N ])n+2 ⊂H1(GS , J [N ])n+1 ⊂ H1(GS , J [N ])n ⊂ . . .

Using the section conjecture, we have

X(Q)n = H1(GS , J [N ])n

for n sufficiently large, and X(Q)n = X(Q) at that point.
To check this, note that the section conjecture implies that the inclusions

X(Q) ⊂ H1(G,∆)n ⊂ H1(G,∆)

are all equalities. From the diagrams

H1(G,∆)n H1(G,∆)

H1(Gn,∆(n)) H1(G,∆(n))

we have maps

H1(G,∆) −→ H1(Gn,∆(n))

and

H1(G,∆) = lim←−H
1(G,∆(n)) = lim←−H

1(Gn,∆(n)).

Suppose

c ∈ H1(GS , J [N ])n

for all n. Then the set H1(Gn,∆(n))c of classes that lift c is non-empty for all n,
and hence

X(Q)c = H1(G,∆)c = lim←−H
1(Gn,∆(n))c

is non-empty. This shows that⋂
n

H1(GS , J [N ])n = X(Q).

Since all sets are finite, we must have

X(Q) = H1(GS , J [N ])n

for some n.
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12. Remark on non-abelian reciprocity

Reference: [Kim16]

Our discussion started with curves of genus zero and the Hasse principle. Of
course this is not a strategy that works for any but the most simple varieties.
However, one might try to refine the Hasse principle. That is, given a variety X
over a number field F , we might try to describe the inclusion

X(F ) ⊂ X(AF ).

For Gm, this is partially achieved by the reciprocity map

Gm(F ) ↪→ Gm(AF )
rec−→ Gal(F̄ /F )ab

and Artin’s reciprocity law
Gm(F ) ⊂ rec−1(0),

interpreted thereby as a result of Diophantine geometry. That is, it states that the
global points of Gm are cut out by an equation inside the adelic points, albeit with
values in a group.

For an affine conic
C : ax2 + by2 = c

described by a class χ ∈ H1(Gal(F̄ /F ),±1), one can replace this by

C(F ) ↪→ C(AF ) −→ Hom(H1(Gal(F̄ /F ),Q/Z(χ)),Q/Z).

It turns out that there is a non-abelian class field theory with coefficients in a fairly
general variety X over a number field F generalising CFT with coefficients in Gm
and giving a partial answer to the problem of refining the Hasse principle. This
consists (with some simplifications) of a filtration

X(AF ) = X(AF )1 ⊃ X(AF )2 ⊃ X(AF )3 ⊃ . . .

and a sequence of maps

recn : X(AF )n −→ Gn(X)

to a sequence of groups Gn(X) such that

X(AF )n+1 = rec−1
n (0).

Thus, the sets form a diagram as follows:

. . . rec−1
3 (0) rec−1

2 (0) rec−1
1 (0) X(AF )

. . . X(AF )4 X(AF )3 X(AF )2 X(AF )1

· · · G4(X) G3(X) G2(X) G1(X).

⊂ ⊂ ⊂ ⊂

⊂
rec4

⊂
rec3

⊂
rec2

⊂
rec1

Put

X(AF )∞ :=

∞⋂
n=1

X(AF )n.

Theorem 12.1 (Non-abelian reciprocity).

X(F ) ⊂ X(AF )∞.
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When F = Q, for a fixed p, we can define

X(Qp)n := prp(X(AQ)n) ⊂ X(Qp).

Conjecture 12.2. Suppose X is a smooth projective curve of genus ≥ 2. Then

X(Q) = X(Qp)∞ =

∞⋂
n=1

X(Qp)n.

It remains to be seen if the reciprocity maps can be made computable so as to
be applicable to the resolution of Diophantine problems.

13. Diophantine principal bundles: a little history

We interject a few remarks on the history of non-abelian constructions in Dio-
phantine geometry, which seem still not to be very well-known.

For a smooth projective curve X/Q of genus g ≥ 1, Weil [Wei29] constructed
in 1929 an embedding

j : X ↪→ JX ,

where JX is an abelian variety of dimension g. That is, within the framework of
analytic geometry,

JX(C) = Cg/Λ = H0(X(C),Ω1
X(C))

∗/H1(X,Z).

and map j is defined over C by fixing a basepoint b setting

j(x)(α) =

∫ x

b

α mod H1(X,Z)

for α ∈ H0(X(C),Ω1
X(C)). The Hodge-theoretic description in some form certainly

goes back to the 19th century and the work of Abel and Jacobi. But Weil’s point
was that JX is also a projective algebraic variety defined over Q, and if b ∈ X(Q),
then the map j is also defined over Q. The reason is that JX is a moduli space of
line bundles of degree 0 on X and

j(x) = O(x)⊗O(−b).

The main application is that we get an embedding of rational points

j : X(Q) ↪→ JX(Q).

Weil also proved that JX(Q) is a finitely generated abelian group, and hoped,
without success, that this could be somehow used to study X(Q).

In the 1938 paper “Généralisation des fonctions abéliennes”, Weil [Wei38] stud-
ied

BunX(GLn) = GLn(K(X))\GLn(AK(X))/
∏
x

GLn(Ôx)

as a “non-abelian Jacobian”. He proved a number of foundational theorems, includ-
ing the fact that vector bundles of degree zero admit flat connections, beginning
non-abelian Hodge theory. His paper was very influential in geometry, leading to the
celebrated paper of Narasimhan and Seshadri [NS65] that proved the isomorphism

BunX(GLn)st
0 ' H1(X,U(n))irr
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between moduli spaces of stable bundles and unitary representations of the funda-
mental group. This was extended by Donaldson [Don83], influencing his ground-
breaking work on four-manifolds and gauge theory, and by Simpson [Sim92] to

HiggsX(GLn) ' H1(X,GLn).

However, as pointed out by Serre in an obituary for Weil, the paper was
“a text presented as analysis, whose significance is essentially
algebraic, but whose motivation is arithmetic”

To this day, there have been no direct applications of algebro-geometric moduli
spaces of non-abelian bundles to Diophantine geometry.

Much of the work described in this paper makes progress by examining the
original analytic Hodge theory of the Jacobian and reinterpreting the maps in terms
of mixed Hodge structures.

X(C) −→ JX(C) ' Ext1
MHS,Z(Z, H1(X(C),Z)).

This naturally suggests an arithmetic realisation:

X(Q) −→ JX(Q)⊗ Zp ' Ext1
Gal(Q/Q),f

(Zp, H ét
1 (X̄,Zp)),

where the map is well-defined via Kummer theory but the isomorphism is conjec-
tural. Critically, we have the interpretation

H1 = πab
1 ,

suggesting the possibility of extending the construction to non-abelian homotopy
and moduli spaces of non-abelian structures. This is what was carried out in the
following settings:

• over C: Hain’s higher Albanese varieties [Hai87b];
• over Qp: p-adic period spaces;
• over global fields: Selmer schemes and variants.

14. Why Diophantine geometry?

Finitely-generated rings of the form

R ' Z[x1, x2, . . . , xn]/I,

which could be, e.g,
R = Z[π, 1/π, e, 1/691, ζ(3)],

should be thought of as number systems with intrinsic discreteness. Scheme theory
provides the conceptual tools to view them as rings of functions on a space. Do
such spaces occur in nature? This is a difficult question, but they appear to be
fundamental building blocks in a way similar to (but harder than) the simplices or
cells of algebraic or combinatorial topology. However, note that the approach is dual
to topology, in that it is the functions that have an underlying discrete skeleton.
Functions represent measurement, you might say, which are then proposed to be
discrete at some fundamental level.

Once arithmetic schemes become a subject of study, it is unavoidable to study
maps between them and hence, Diophantine geometry. It is interesting that discrete
approximations to spaces become a natural consequence. Any compact manifoldM ,
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for example, has an underlying arithmetic scheme. This is because the Nash–
Tognoli theorem [Nas52, Tog76] allows us to realise it as a real algebraic set,
which then is just

M = X(R)

for an arithmetic scheme X. (Of course there is a choice of X involved.) Whenever
we write R = lim−→Ri as a limit of absolutely finitely-generated rings

· · · ⊂ Ri−1 ⊂ Ri ⊂ Ri+1 ⊂ · · · ⊂ R,

we get the sequence of inclusions

· · · ⊂ X(Ri−1) ⊂ X(Ri) ⊂ X(Ri+1) ⊂ · · · ⊂ X(R) = M.

Because Diophantine geometry is still in such a primitive state of development, the
situations where one understands the X(Ri) are extremely rare. This is one reason
it’s hard to judge at present if a filtration like this might be useful.
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