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Effective Mordell

X /Q smooth projective curve of genus g > 2

Mordell Conjecture (1922), Faltings's Theorem (1983)

#X(Q) < o0

» Chabauty (1941): proved finiteness if r :=rk Jacx(Q) < g
» Faltings (1983): proved Mordell in general

Open problem: How to determine X(Q) in practice?
Can use computer search to list points in X(Q) but how do we know we found them all?

Chabauty's proof can be made effective but the condition r < g is not always satisfied
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The cursed curve

Example: the cursed curve

y* 4 5x* — 6x%y2 4 6x3 + 26x%y + 10xy? — 10y> — 32x% — 40xy + 24y? + 32x — 16y = 0

It has rational points

11 33
(070)a (072)7 (1?1)7 (ivﬁ)a (_jai) ©0,2)
but how do we know there are no others? P,
This question comes up in a question of Serre ' a.n
from 1972 about residual Galois representations 72, 172)
of elliptic curves. 0, 0)

Chabauty does not apply since r = g = 3.
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The cursed curve

Example: the cursed curve

y* 4 5x* — 6x%y2 4 6x3 + 26x%y + 10xy? — 10y> — 32x% — 40xy + 24y? + 32x — 16y = 0

It has rational points

11 33

(070)a (072)7 (1?1)7 (27§)a (_jai) ©0,2)
but how do we know there are no others? P,
This question comes up in a question of Serre ' a.n
from 1972 about residual Galois representations 72, 172)
of elliptic curves. 0, 0)

Chabauty does not apply since r = g = 3.

Idea: develop “non-abelian” generalisation of Chabauty
» Kim (2005): Chabauty-Kim method (aka non-abelian Chabauty)
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The Chabauty—Kim method

For p a prime of good reduction, try to locate X(Q) inside X(Qp). Kim constructs a
descending sequence of subsets

X(Qp) 2 X(Qp)l 2 X(Qp)2 2 ...

all containing X(Q). The set X(Qp)n is called the Chabauty—Kim locus of depth n.
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The Chabauty—Kim method

For p a prime of good reduction, try to locate X(Q) inside X(Qp). Kim constructs a
descending sequence of subsets

X(Qp) 2 X(Qp)l 2 X(QP)2 2 ...

all containing X(Q). The set X(Qp)n is called the Chabauty—Kim locus of depth n.

» X(Qp)n is cut out inside X(Qp) by p-adic analytic functions
(more precisely: iterated Coleman integrals)

> X(Qp)1 is finite if r < g (Chabauty)
> X(Qp)2 is finite if r < g+ p — 1, where p := rk NS(Jacx) (Quadratic Chabauty)
» Bloch—Kato or Fontaine-Mazur conjecture = #X(Qp), < oo for n>> 0
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Kim's Conjecture

% Y5, Ga A bﬁgplqgr(

- o cllsn g ol ik

X(QP)” = X(Q) fOI’ n>=> 0. ijA o’ gf:{q‘ 1%
. ok

» Practical relevance: if true, can try to compute
X(Q) by computing X(Qp), for n=1,2,...

» Theoretical relevance: Kim's Conjecture implies
local-to-global principle for Grothendieck’s Section
Conjecture (Betts—Kumpitsch-L.)

Computing X(Qp) is hard!
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Construction of Chabauty—Kim loci

Idea: Let U be a quotient of the Qp-pro-unipotent étale fundamental group of X and
construct the Chabauty—Kim diagram via moduli spaces of U-torsors with Galois action

X(Q) ———— X(Qp)

lj ljp
Sely(X)(Qp) —Z+ HY(Gp, U)(Q)

Fact: locp is an algebraic map of affine Qp-schemes
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Construction of Chabauty—Kim loci

Idea: Let U be a quotient of the Qp-pro-unipotent étale fundamental group of X and
construct the Chabauty—Kim diagram via moduli spaces of U-torsors with Galois action

X(Q) ———— X(Qp)

lj ljp
Sely(X)(Qp) —Z+ HY(Gp, U)(Q)

Fact: locp is an algebraic map of affine Qp-schemes

Strategy:
» show that loc, is not dominant (e.g., for dimension reasons)
> find 0 # f: H}(Gp, U) — Al vanishing on im(loc,)
» the pullback f o j,: X(Qp) — Qp is a nonzero p-adic analytic function whose
vanishing set is finite and contains X(Q)
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The thrice-punctured line

Today: compute some (refined) Chabauty—Kim loci in the best-understood example

P! < {0,1,00}.
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» S: finite set of primes
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We are interested in the S-integral points X(Zs). S-unit equation:
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The thrice-punctured line

Today: compute some (refined) Chabauty—Kim loci in the best-understood example
P! < {0,1,00}.

Setting:
» S: finite set of primes
> Zs =Z[} : £ € S]: ring of S-integers
> X = ]P’%S ~{0,1,00}: thrice-punctured line

We are interested in the S-integral points X(Zs). S-unit equation:
x+y=1 with x,y € Zg
Solutions are x € Q s.t. x and 1 — x are of the form £ ][, ¢* with ¢ € Z.

Theorem (Siegel-Mahler, 1933)
X(Zs) is finite.
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Some small sets S

» Example S = 0:
X(Z) =0

X(Z[1/2]) = {2,—1,;}
» Example S = {2,3}:

1 123 1 134 1 189 1
X(2Z[1/6]) = {2,, 1335355 2% 03 3 3% 08 —8,—8}
(Levi ben Gershon 1342, The Harmony of Numbers)

COBS STHF-GERSONDES 1Ny o0 m"N-llu.
<

» Example S = {2}:
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Chabauty—Kim for the thrice-punctured line

Let p € S, so that X(Zs) C X(Zp). Have Chabauty—Kim loci
X(ZP) 2 X(Zp)s,l = X(ZP)5,2 2 ...

all containing X(Zs), as in the projective higher genus case.
Kim (2005): #X(Zp)s,n < oo for n>>0

Dan-Cohen, Wewers, Brown, Corwin: motivic variant of Chabauty—Kim method
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Refined Chabauty—Kim

Betts—Dogra (2020): refined Chabauty—Kim loci
X(Zp) 2 X(Zp)5 2 X(Zp)33 2 ...
Idea: partition S-integral points by their reductions modulo primes £ € S

red: X(Zs) € P(Zs) = PY(Z) — P*(Fy)
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Refined Chabauty—Kim

Betts—Dogra (2020): refined Chabauty—Kim loci
X(Zp) 2 X(Zp)5 2 X(Zp)33 2 ...
Idea: partition S-integral points by their reductions modulo primes £ € S

red: X(Zs) € P(Zs) = PY(Z) — P*(Fy)

Refined Kim's Conjecture
X(Zp)Tn = X(Zs) for n>> 0

proved for S = {2} and all odd p in depth max(1, p — 3) (Betts—Kumpitsch-L. 2023)
proved for S = {2, g} and p = 3 in depth 2 when ¢ = 2" + 1 > 3 Fermat or Mersenne
(Best-Betts—Kumpitsch—-L.-McAndrew—Qian-Studnia—Xu 2024)

case S = {2,3}: depth 2 does not suffice — go to depth 4 (later)
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Depth 2 loci

Let S = {2, g} for some odd prime q. Focus on
X(Zs)a,0) = {x € X(Zs) : reda(x) € X U {1}, redg(x) € X U{0}}

and associated refined Chabauty—Kim loci X(Z, 2_17,,?)_
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Depth 2 loci

Let S = {2, g} for some odd prime q. Focus on
X(Zs)a,0) = {x € X(Zs) : reda(x) € X U {1}, redg(x) € X U{0}}

and associated refined Chabauty—Kim loci X(Z, glr?)

Theorem (BBKLMQSX)

The depth 2 locus X(Zp)f{lz’?q)} , is defined inside X(Z,) by

Lio(z) — alog(z) Li1(z) =0
for some computable p-adic constant a = a(q) € Qp.

Here, log is the p-adic logarithm and Li,, is the p-adic polylogarithm

0 X x 1—x

(m-fold iterated integral)
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Computing depth 2 loci

L.: Sage code for computing X(Zp)g’?} , for arbitrary p and g

— https://github.com/martinluedtke/RefinedCK
Example: S = {2,3}, p =5. Have X(Z[1/6])1,0) = {—3,-1,3,9}.

p=5;q9=23
-Qp(p) (3) .polylog(2)
CK_depth_2_locus(p,q,10,a)

]

a

Output:

[2 + 0(579),

4%5 + 4x5°2 + 4x5~3 + 4*5~4 + 4A*5°5 + 4*5°6 + 4*5°7 + 4%5°8 + 0(5°9),
0(576),

572 + 2x5°3 + 5°4 + 3%5°5 + 0(5°6),

4x5 + 4%5°2 + 4%5°3 + 4*%5°4 + 4x5°5 + 4%5°6 + 4%5°7 + 4*x5°8 + 0(579),
5 + 0(5°9)]

INF S ER TN
+ o+ o+ o+ o+
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https://github.com/martinluedtke/RefinedCK

Analysing the size of depth 2 loci

How does the size of X(Zp)glz’g)}’2 vary with the choice of auxiliary prime p?
p 57111317 [19]23]29[31[... | 1091 | 1093 [ 1097
#X(2,)59,, | 6818162220 20]26|36|... | 1076 | 2154 | 1078

Observations:
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Analysing the size of depth 2 loci

How does the size of X(Zp)glz’g)}’2 vary with the choice of auxiliary prime p?
p 57111317 [19]23]29[31[... | 1091 | 1093 [ 1097
#X(2,)59,, | 6818162220 20]26|36|... | 1076 | 2154 | 1078

Observations:
P size is even
» 0 or 2 points in each residue disc
» almost always of size ~ p, but for p € {1093,3511} of size = 2p
Can explain this heuristically. Related to 1093 and 3511 being (the only known)

Wieferich primes, i.e., primes with 2P~1 = 1 mod p?.

Similar observations for S = {2, g} with g different from 3.
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Ingredients for computing depth 2 loci

[Lia(2) — a(q) log(2) Lir(2) = 0|

How to compute the zero locus?
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Ingredients for computing depth 2 loci

[Lia(2) — a(q) log(2) Lir(2) = 0|

How to compute the zero locus?

1. Compute the p-adic constant a(q) using modified algorithm of Dan-Cohen—Wewers
— https://github.com/martinluedtke/dcw_coefficients

2. Compute power series for polylogarithms on residue discs around roots of unity ¢

L'm(C + Pt) = Z am,ktk

k=1

— Besser—de Jeu's "Li(P)-service" paper

3. Implemented Hensel's Lemma for finding roots of p-adic power series with correct
precision: function Zproots
— https://github.com/martinluedtke/RefinedCK
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Depth 4 loci

Adapting work of Corwin and Dan-Cohen to the refined setting, we derive a new
function for the refined depth 4 locus in the case S = {2,3}:

Theorem (L. 2025)

Let S={2,3} and p ¢ S. Any point z in the refined Chabauty—Kim locus X(Zp)f{lzg)} A
satisfies, in addition to the depth 2 equation, the equation

(Li4(z) log(z) Li3(z) log(z)3 Li1(z)>
det | Lig(3) log(3)Lis(3) log(3)3Li1(3) | =0.
Liz(9) log(9)Li3(9) log(9)3Li1(9)

Also have a depth 4 equation for general S = {2, g} but it is less explicit.
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Computing depth 4 loci for S = {2,3}

Use the new equation to compute depth 4 locus X(Zp)g’% %

Pp=5;q=3; N=10
coeffs = Z_one_sixth_coeffs(p,N)
CK_depth_4_locus(p,q,N,coeffs)

Output:

[2 + 4%5 + 4*5°2 + 4%5°3 + 4%5°4 + 4%5°5 + 4x57°6 + 4x5°7 + 4x5°8 + 0(579),
3 + 0(576),

4 + 4x5 + 4%x5°2 + 4%5°3 + 4*%5°4 + 4x5°5 + 4%5°6 + 4*5°7 + 4x5°8 + 0(579),
4 + 5+ 0(579)]

This is {—3,3,—1,9} = X(Z[1/6])(1,0), extra points are eliminated.
= Refined Kim's Conjecture holds for S = {2,3} and p =5
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Verifying Kim's Conjecture

| computed depth 4 loci for S = {2,3} for many primes p:

Theorem (L. 2025)
The Refined Kim's Conjecture holds for S = {2,3} and all primes 3 < p < 10,000.
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» Sage code to compute depth 2 Chabauty—Kim loci for S = {2, q} and all p
» Analysed sizes of those loci, explained numerical observations

» Derived functions vanishing on depth 4 loci

» Verified Kim's Conjecture for S = {2,3} and p < 10,000
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Thanks for listening. ..

(18) In the summer of 1936 at Groningen in the Netherlands, when I was
still working at the University there, a bicycle rider ran into me. As a conse-
quence, the tuberculosis in my right knee bone, which had been dormant for
many years, flared up again. It therefore became necessary to undergo
several bone operations in 1936 and 1937. This was naturally a very painful
period and I was given many morphine injections, although my doctor
warned me against their danger.

After a further operation the pains and hence also the injections finally
stopped. Then I tried to convince myself that the drug had not damaged my
brain by studying the problem of the possible transcendency of the decimal
fraction

D =0.123456789101112...

5 in which the successive integers are written one after the other. I found that I
Hereweg Groningen in 1906. could still do mathematics and succeeded in proving the transcendency of
Source: https://www.groningerarchieven.nl both D and of infinitely many more general decimal fractions.

From: K. Mahler, Fifty years as a mathematician

...and cycle responsibly in Groningen!
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