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Effective Mordell

X /Q smooth projective curve of genus g > 2

Mordell Conjecture (1922)

#X(Q) < o0

» Chabauty (1941): proved finiteness if r :=rk Jacx(Q) < g
» Faltings (1983): proved Mordell in general

Open problem: How to determine X(Q) in practice?
Can use computer search to list points in X(Q) but how do we know we found them all?

Chabauty's proof can be made effective but the condition r < g is not always satisfied
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The cursed curve

Example: Xs(13) — the split Cartan modular curve of level 13 a.k.a. the cursed curve

y* 4 5x* — 6x%y2 4 6x3 + 26x%y + 10xy? — 10y> — 32x% — 40xy + 24y? + 32x — 16y = 0

It has rational points

(070)3 (07 2)7 (1’1)7 (%7%)a (_%a

but how do we know there are no others?

This question comes up in a uniformity ques- o a.m
tion of Serre from 1972 about residual Galois 1)
representations of elliptic curves. 0.0)

)

NI
S
»

Chabauty does not apply since r = g = 3.

Idea: develop “non-abelian” generalisation of Chabauty
» Kim (2005): Chabauty-Kim method (aka non-abelian Chabauty)
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The Chabauty—Kim method

For p a prime of good reduction, try to locate X(Q) inside X(Qp). Kim constructs a
descending sequence of subsets

X(Qp) 2 X(Qp)1 2 X(Qp)22 ..

all containing X(Q). The set X(Qp), is called the Chabauty—Kim locus of depth n.

» X(Qp)n is cut out inside X(Qp) by p-adic analytic functions
(more precisely: iterated Coleman integrals)
= X(Qp)n finite or all of X(Qp)

> X(Qp)1 is finite if r < g (Chabauty)
> X(Qp)2 is finite if r < g+ p — 1, where p := rk NS(Jacx) (“Quadratic Chabauty”)
» Bloch—Kato or Fontaine-Mazur conjecture = #X(Qp), < oo for n>> 0
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Kim's Conjecture

Kim's Conjecture

X(Qp)n = X(Q) for n> 0.

» Practical relevance: if true, can try to compute
X(Q) by computing X(Qp), for n=1,2,...

» Theoretical relevance: Kim's Conjecture implies F N
local-to-global principle for Grothendieck's R\ Wit
Section Conjecture (Betts—Kumpitsch-L.)

Computing X(Qp), is hard!

Photo credit: Jan Vonk
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Construction of Chabauty—Kim loci

» Fix rational basepoint b € X(Q)
> 75(Xg, b) = étale fundamental group of X
> Ux = its Qp-prounipotent completion = “Wf"(X@, b) ®5 Qp"
> Gg = Gal(Q/Q) acts on (Xg;, b), hence on Ux.
Let Ux — U be a Gg-equivariant quotient. We have the Chabauty-Kim diagram

X(Q) ———— X(Qp)

lj |

Sely(X)(Qp) —Z5 HY(Gp, U)(Q)

Sely(X) and H}(Gp, U) are affine Q,-schemes, the global and local Selmer scheme.
They are moduli spaces for U-torsors with Gg- resp. Gg,-action, and the vertical maps
are constructed by taking path torsors: x — Wft(X@; b, x).
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Construction of Chabauty—Kim loci

X(Q) ———— X(Qp)

lj ljp
Sely(X)(Qp) —2 HE(Gp, U)(Qp)

Fact: locp is an algebraic map of affine Qp-schemes

Strategy:
» show that loc, is not dominant (e.g., for dimension reasons)
> find 0 # f: H}(Gp, U) — Al vanishing on im(loc,)
» the pullback f o j,: X(Qp) — Qp is a nonzero p-adic analytic function whose
vanishing set is finite and contains X(Q)

Martin Liidtke 7/26



Construction of Chabauty—Kim loci

The Chabauty—Kim locus associated to U is the set
X(Qp)u = {x € X(Qp) : jp(x) € im(locy)}
= ﬂ V(fojp) € X(Qp)-

f as above

Commutativity of the Chabauty—Kim diagram implies
X(Q) € X(Qp)u € X(Qp)-

If U= Ux,p is the n-th lower central series quotient of Ux, we write X(Qp), for the
associated “depth n" Chabauty—Kim locus.

= X(Qp) 2 X(Qp)1 2 X(Qp)2 2 - ..



Quadratic Chabauty

» Quadratic Chabauty (Balakrishnan, Dogra,...) uses a certain intermediate
quotient Ux o - Uqc — Ux 1 to construct a subset

X(Qp)l 2 X(QP)QC 2 X(QP)2'

It can be described using p-adic heights and is finite whenever r < g + p — 1,
where p == rk NS(Jacx). Very few results beyond that.

» Quadratic Chabauty broke the curse of the cursed curve:

X(Q17)ac = X(Q)

(Balakrishnan, Dogra, Miiller, Tuitman, Vonk 2019)
— Quanta article: “Mathematicians Crack the Cursed Curve’ 2

We would like to have an algorithm for computing X(Qp), for larger n.
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https://www.quantamagazine.org/mathematicians-crack-the-cursed-curve-20171207/

The thrice-punctured line

Today: compute some (refined) Chabauty—Kim loci in the best-understood example
P! < {0,1,00}.

Setting:
» S: finite set of primes
> Zs = O(Spec(Z) \ S) = Z[} : £ € S]: ring of S-integers
» X =P! < {0,1,00}: thrice-punctured line over Zs

We are interested in the S-integral points X(Zs). S-unit equation:
x+y=1 with x,y € Zg
Solutions are x € Q s.t. x and 1 — x are of the form £ ], ¢* with ¢ € Z.

Theorem (Siegel-Mahler, 1933)
X(Zs) is finite.



Some small sets S

» Example S = 0:

> Example S = {2}:

» Example S = {2,3}:
1 123 1 3 1
=12,-1,2,3,-2,2,2,2, -2, — 4,->, 22> 9 8>
X(Z[1/6]) {27 17273’ 7373727 27 37 9 37374’4797 879?

(Levi ben Gershon 1342, The Harmony of Numbers)
3 HO0BS STAFF-GEFSONDES 111137 MITN-"";

=
SN
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Some small sets S

» Example S = {2,q9}, g =2"+ 1 > 3 Fermat prime:

1 1 g-—1 ¢ 1
X(Z[1/2q]): {27_1a7q71_qa7 ) ’ }
2 9 g q-11—gq

» Example S = {2,q9}, g =2" — 1 > 3 Mersenne prime:

1 1 g+1 1
X(Z[I/Qq]): {27_177_q7q+1a_a 9 d }

2 g q 'g+1lg+1

» Example S = {2, g}, g not Fermat or Mersenne:

X(Z[1/2q)) = X(2[1/2]) = {2, 1 ;}
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Chabauty—Kim for the thrice-punctured line

Let p & S, so that X(Zs) C X(Zp). Have Chabauty—Kim loci
X(Zp) 2 X(Zp)s1 2 X(Zp)sp 2D ...

all containing X(Zs), as in the projective higher genus case.

Theorem (Kim, 2005)
#X(Zp)s,n < oo for n>>0
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Kim's Conjecture for the thrice-punctured line

Kim's Conjecture
X(Zp)s,n = X(Zs) for n>>0

Known cases:

» S={(, n=2, p<10° (Balakrishnan, Dan-Cohen, Kim, Wewers, 2018)

» S =10, n=max(l,p— 3), p arbitrary (Betts, Kumpitsch, L., 2023)

» S={2}, n=4,3 < p <29 (Dan-Cohen, Wewers, 2016)

» S={3}, n=4, pe {5,7} (Corwin, Dan-Cohen, 2020)
Partial results for S = {2,3}, n = 6 (Jarossay, Lilienfeldt, Saettone, Weiss, Zehavi,
2024)

Most of these results use a motivic variant of Chabauty—Kim method, using torsors
under the “motivic fundamental group” rather than its étale realisation
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Example: S = ()

The Chabauty—Kim diagram for S =0, n = 2:

X(Z) —— X(Zp)

l l(log, Li1, Li2)

locp A3

{0} ——
Here, log is the p-adic logarithm and Li,, is the p-adic polylogarithm

Lim(z) = A d?x e d7X1d_XX (m-fold iterated integral)

Chabauty—Kim locus:

X(Zp)p2 = {z € X(Zp) : log(z) = Li1(z) = Liz(z) = 0}
={z€{G, ¢ N2y, : Lia(z) =0}
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Refined Chabauty—Kim

Betts—Dogra (2020): refined Chabauty—Kim loci
X(Zp) 2 X(Zp)5 2 X(Zp)33 2 ...
Idea: partition S-integral points by their reductions modulo primes £ € S

red: X(Zs) € P(Zs) = PY(Z) — P*(Fy)

Refined Kim's Conjecture
X(Zp)Tn = X(Zs) for n>> 0

proved for S = {2} and all odd p in depth max(1, p — 3) (Betts—Kumpitsch-L., 2023)
proved for S = {2, g} and p = 3 in depth 2 when g = 2" + 1 > 3 Fermat or Mersenne
(Best—Betts—Kumpitsch—L.—McAndrew—Qian—Studnia—Xu, 2024)

case S = {2,3}: depth 2 does not suffice — go to depth 4 (later)
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Depth 2 loci

Let S = {2, g} for some odd prime g. Focus on
X(Zs)1,0) = {x € X(Zs) : reda(x) € X U {1}, redg(x) € X U{0}}

and associated refined Chabauty-Kim loci X(Z, gl’,?).

Theorem (BBKLMQSX, 2024)

The depth 2 locus X(Zp)({lz’%)} , is defined inside X(Z,) by
Liz(z) — alog(z) Li1(z) =0

for some computable p-adic constant a = a(q) € Qp.

Martin Liidtke 17/26



Computing depth 2 loci

L. (2024): Sage code for computing X(Zp)g’?} , for arbitrary p and g
— https://github.com/martinluedtke/RefinedCK
Example: S = {2,3}, p =5. Have X(Z[1/6])1,0) = {—3,-1,3,9}.

p=5;q9=23
-Qp(p) (3) .polylog(2)
CK_depth_2_locus(p,q,10,a)

]

a

Output:

[2 0(5~9),

4x5 + 4%5°2 + 4%5°3 + 4*%5°4 + 4x5°5 + 4%5°6 + 4%5°7 + 4*x5°8 + 0(579),
0(5°6),

572 + 2*5°3 + 574 + 3*5°5 + 0(576),

4%5 + 4x5°2 + 4x5~3 + 4*5~4 + 4A*5~5 + 4*5°6 + 4*%5°7 + 4%5°8 + 0(5°9),

5 + 0(579)]
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https://github.com/martinluedtke/RefinedCK

Analysing the size of depth 2 loci

How does the size of X(Zp)glz’g)}’2 vary with the choice of auxiliary prime p?
p 57111317 [19]23]29[31[... | 1091 | 1093 [ 1097
#X(2,)59,, | 68|18 1622202026 |36|... | 1076 | 2154 | 1078

Observations:
> size always seems to be even
» 0 or 2 points in each residue disc
» almost always of size ~ p, but for p € {1093,3511} of size = 2p
Can explain this. Related to 1093 and 3511 being (the only known) Wieferich primes,

i.e., primes with 2°~1 = 1 mod p?.

Similar observations for S = {2, q} with g different from 3.
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Ingredients for computing depth 2 loci

[Lia(2) — a(q) log(2) Lir(2) = 0|

How to compute the zero locus in X(Z,)?

1. Compute the p-adic constant a(q) using modified algorithm of Dan-Cohen—Wewers
— https://github.com/martinluedtke/dcw_coefficients

2. Compute power series for polylogarithms on residue discs around roots of unity ¢
[e.e]
Lim(C+pt) =D amxt
k=1

— Besser—de Jeu's “Li(P)-service” paper

3. Implemented Hensel's Lemma for finding roots of p-adic power series with correct
precision: function Zproots
— https://github.com/martinluedtke/RefinedCK
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Depth 4 loci

Adapting work of Corwin and Dan-Cohen to the refined setting, we derive a new
function for the refined depth 4 locus in the case S = {2,3}:

Theorem (L. 2024)

Let S={2,3} and p ¢ S. Any point z in the refined Chabauty—Kim locus X(Zp)f{lzg)} A
satisfies, in addition to the depth 2 equation, the equation

(Li4(z) log(z) Li3(z) log(z)3 Li1(z)>
det | Lig(3) log(3)Lis(3) log(3)3Li1(3) | =0.
Liz(9) log(9)Li3(9) log(9)3Li1(9)

Also have a depth 4 equation for general S = {2, g} but it is less explicit.
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Proof sketch

Work with U = Upr, 4, the polylogarithmic depth 4 quotient.

The localisation map Sels pr, 4(X) — H}(Gp, Up1,4) can be identified with

loc,: A5 x AS x Al — A
Dres ArXe
D res anYe
((xe)ees, (ve)ees, z3) > t,qes Frer XtV
Z&,@z,qes A1y, To, T Xl X2 Y q + as523
241,527537‘765 A1y, Toy Teg Ta Xl X0 XU3 Y q + ZEGS Ar,03 X023

Here, the a, subscripted by words in 7, (¢ € S) and o3 are certain p-adic constants.

For S = {2, 3}, restricting to the (1, 0)-refinement means setting x, = y3 = 0.
Find shape of equation and use known points 3 and 9 to determine it exactly.
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Computing depth 4 loci for S = {2,3}

Use the new equation to compute depth 4 locus X(Zp)?z’g)} 4

p=5;q=23; N=10
coeffs = Z_one_sixth_coeffs(p,N)
CK_depth_4_locus(p,q,N,coeffs)

Output:

[2 + 4%5 + 4*5°2 + 4%5°3 + 4%5°4 + 4%5°5 + 4%57°6 + 4x5°7 + 4x5°8 + 0(579),
3 + 0(576),

4 + 4x5 + 4%5°2 + 4%5°3 + 4*%x5°4 + 4x5°5 + 4%5°6 + 4%5°7 + 4*x5°8 + 0(579),
4 + 5 + 0(579)]

This is {—3,3,—1,9} = X(Z[1/6])(1,0), extra points are eliminated.
= Refined Kim's Conjecture holds for S = {2,3} and p =5
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Verifying Kim's Conjecture

Compute the depth 4 locus for many other primes to obtain:

Theorem (L. 2024)
The Refined Kim's Conjecture holds for S = {2,3} and all primes 3 < p < 10,000.
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Some ongoing work

» Higher number fields.
Work in progress with Xiang Li: K = Q(g), S = {(1 — (g)}, depth 2

» Use also multiple polylogarithms Lix, &, .
Work in progress with Corwin, Dan-Cohen

» Higher genus curves.
Work in progress with Corwin, Dan-Cohen: g = 1, depth 3;
Work in progress with Leonhardt: (classical) Chabauty for general affine curves
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Thanks for listening. ..

(18) In the summer of 1936 at Groningen in the Netherlands, when I was
still working at the University there, a bicycle rider ran into me. As a conse-
quence, the tuberculosis in my right knee bone, which had been dormant for
many years, flared up again. It therefore became necessary to undergo
several bone operations in 1936 and 1937. This was naturally a very painful
period and I was given many morphine injections, although my doctor
warned me against their danger.

After a further operation the pains and hence also the injections finally
stopped. Then I tried to convince myself that the drug had not damaged my
brain by studying the problem of the possible transcendency of the decimal
fraction

D =0.123456789101112...

5 in which the successive integers are written one after the other. I found that I
Hereweg Groningen in 1906. could still do mathematics and succeeded in proving the transcendency of
Source: https://www.groningerarchieven.nl both D and of infinitely many more general decimal fractions.

From: K. Mahler, Fifty years as a mathematician

...and watch out for cyclists when in Groningen!
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