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1. The Selmer Section Conjecture
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Grothendieck’s letter to Faltings

In a letter to Faltings from 1983, Grothendieck lays out his vision of
what he calls anabelian geometry.

Idea: recover information about a scheme from its profinite étale
fundamental group

Example: number fields are determined by their absolute Galois
group (Neukirch–Uchida):

GK
∼= GL ⇒ K ∼= L.
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Fundamental exact sequence

Let X/Q be a smooth projective curve of genus ≥ 2.

Grothendieck’s section conjecture predicts that the set of rational
points X (Q) can be recovered from the étale fundamental group.

The maps
XQ → X → Spec(Q)

induce an exact sequence

1 → πét
1 (XQ) → πét

1 (X ) → GQ → 1 (FES)

on profinite étale fundamental groups: the fundamental exact
sequence.
If x ∈ X (Q) is a rational point, it induces a section sx of (FES),
well-defined up to πét

1 (XQ)-conjugation. So we have a section map

X (Q) → Sec(X/Q) := {sections of (FES)}/∼ . (S)
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The Section Conjecture

Section Conjecture (Grothendieck, 1983)
If X/Q is a smooth projective curve of genus ≥ 2, then (S) is
bijection X (Q) ∼= Sec(X/Q).

▶ (S) is known to be injective. The question is whether it is
surjective.

▶ Some examples of X have been constructed where one can
show that Sec(X/Q) = ∅ (Stix, Li–Litt–Salter–Srinivasan). In
these cases, (S) is bijective automatically.

▶ In general, Sec(X/Q) is very mysterious (we don’t know GQ!).

Open Question
Can we find some X with X (Q) ̸= ∅ for which the Section
Conjecture holds?
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Selmer sections

If s is a section of the fundamental exact sequence and p is prime,
then the restriction s|Gp is a section of the local fundamental exact
sequence

1 → πét
1 (XQp

) → πét
1 (XQp) → Gp → 1 .

Definition
We say that s is Selmer (or sometimes locally geometric or adelic)
if s|Gp comes from a Qp-rational point xp ∈ X (Qp) for all primes p.
We write Sec(X/Q)Sel for the set of Selmer sections.

So we have

X (Q) ⊆ Sec(X/Q)Sel ⊆ Sec(X/Q) .

Selmer Section Conjecture
If X/Q is a smooth projective curve of genus ≥ 2, then

Sec(X/Q)Sel = X (Q) .
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Chabauty–Kim and the Selmer Section Conjecture

Main point of this talk:

One can use the Chabauty–Kim method to prove instances
of the Selmer Section Conjecture.
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The Chabauty–Kim method

Let p be some auxiliary prime and let U be a GQ-equivariant
quotient of the Qp-pro-unipotent étale fundamental group of XQ
(at some rational basepoint). We have the Chabauty–Kim diagram

X (Q) X (Qp)

SelU(X/Q)(Qp) H1
f (Gp,U(Qp))

j jp

locp

where SelU(X/Q) is the global Selmer scheme of
Balakrishnan–Dan-Cohen–Kim–Wewers1.

1A non-abelian conjecture of Tate–Shafarevich type
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The Chabauty–Kim method

X (Q) X (Qp)

SelU(X/Q)(Qp) H1
f (Gp,U(Qp))

j jp

locp

Fact: locp is an algebraic map of affine Qp-schemes

Strategy:
▶ show that locp is not dominant (e.g., for dimension reasons)
▶ find 0 ̸= f : H1

f (Gp,U) → A1 vanishing on im(locp)

▶ the pullback f ◦ jp : X (Qp) → Qp is a nonzero p-adic analytic
function whose vanishing set is finite and contains X (Q)
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Kim’s Conjecture

Definition
The Chabauty–Kim locus associated to U is the set

X (Qp)U := {x ∈ X (Qp) : jp(x) ∈ im(locp)} ⊆ X (Qp) .

Commutativity of the Chabauty–Kim diagram gives

X (Q) ⊆ X (Qp)U ⊆ X (Qp) .

In the particular case that U is the whole fundamental group, we
write X (Qp)∞ for X (Qp)U . This is contained in all
other X (Qp)U ’s.

Kim’s Conjecture

X (Qp)∞ = X (Q).
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Kim’s conjecture implies Selmer Section Conjecture

We make precise the relationship between Kim’s Conjecture and
the Selmer Section Conjecture.

Theorem A (Betts–Kumpitsch–L.), projective case
Let X/Q be a smooth projective curve of genus ≥ 2
with X (Q) ̸= ∅. Suppose that Kim’s Conjecture holds for (X , p)
for p in a set P of primes of Dirichlet density 1. Then the Selmer
Section Conjecture holds for X .

This gives a new strategy for proving instances of the Selmer
Section Conjecture.

We show that the strategy is viable by verifying the hypotheses in
an example of an affine hyperbolic curve, the thrice-punctured line
over Z[1/2].

Martin Lüdtke 11/33



Generalisation: S-integral points

Now fix a finite set S of primes. Let Y /Q be a hyperbolic curve,
and let Y/ZS be an S-integral model of Y .

Definition
A section s of the fundamental exact sequence for Y is S-Selmer
(with respect to the model Y) if s|Gp comes from a{

Qp-rational point yp ∈ Y (Qp) if p ∈ S ,
Zp-integral point yp ∈ Y(Zp) if p /∈ S ,

for all primes p. We write Sec(Y/ZS)
Sel for the set of S-Selmer

sections.

So we have
Y(ZS) ⊆ Sec(Y/ZS)

Sel ⊆ Sec(Y /Q) .

Conjecture (S-Selmer Section Conjecture)

Sec(Y/ZS)
Sel = Y(ZS) .
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Chabauty–Kim for S-integral points

There is also a version of the Chabauty–Kim method which applies
to S-integral points on Y. For any p /∈ S and any GQ-equivariant
quotient U of the Qp-pro-unipotent étale fundamental group
of YQ, this method defines a locus

Y(ZS) ⊆ Y(Zp)S ,U ⊆ Y(Zp) .

Kim’s Conjecture

Y(Zp)S ,∞ = Y(ZS) .
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Theorem A, general case

Theorem A (Betts–Kumpitsch–L.)
Let Y/ZS be a hyperbolic curve whose smooth completion has a
Q-rational point. Suppose that Kim’s Conjecture holds
for (Y,S , p) for p in a set P of primes of Dirichlet density 1. Then
the S-Selmer Section Conjecture holds for (Y, S).

Remark : If Y = X is projective, then everything in sight is
independent of the choice of set S and model Y, and this
specialises to the earlier projective statement.
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Theorem B

We can verify the hypotheses of Theorem A in one example.

Theorem B (Betts–Kumpitsch–L.)

Let Y = P1
Z[1/2] ∖ {0, 1,∞} be the thrice-punctured line

over Z[1/2]. Then Kim’s Conjecture holds for (Y, {2}, p) for all
odd primes p.

Consequence: The S-Selmer Section Conjecture holds
for Y = P1

Z[1/2] ∖ {0, 1,∞} and S = {2}.
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2. Proof of Theorem A
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Theorem A, recap

Theorem A, projective case
Let X/Q be a smooth projective curve of genus ≥ 2
with X (Q) ̸= ∅. Suppose that Kim’s Conjecture holds for (X , p)
for p in a set P of primes of Dirichlet density 1. Then the Selmer
Section Conjecture holds for X .

From now on, we fix some X/Q and P as above.
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Let s ∈ Sec(X/Q)Sel be a Selmer section, so s|Gp is induced by
some xp ∈ X (Qp) for all primes p.

Claim
xp ∈ X (Qp)∞ for all primes p.

Proof : Let Π = πét
1 (XQ, b) be the profinite étale fundamental

group based at some b ∈ X (Q). The section map

X (Q) → Sec(X/Q)

can be identified with the map

X (Q) → H1(GQ,Π)

sending a point x ∈ X (Q) to the cocycle c : GQ → Π measuring
the difference between the two sections sb and sx :

c(σ) = sx(σ)sb(σ)
−1.

Have a similar local section map X (Qℓ) → H1(Gℓ,Π).
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The Qp-pro-unipotent étale fundamental group U of XQ is the
Qp-Malc̆ev completion of Π, i.e., the universal pro-unipotent group
over Qp with a continuous homomorphism

ϕ : Π → U(Qp) .

For any prime ℓ, we then have a commuting diagram

H1(GQ,Π) H1(GQ,U(Qp))

X (Qℓ) H1(Gℓ,Π) H1(Gℓ,U(Qp))

ϕ∗

locℓ locℓ

ϕ∗

Selmer sections: elements of H1(GQ,Π) locally coming from X (Qℓ)
Selmer scheme: elements of H1(GQ,U(Qp)) locally coming from
X (Qℓ)
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Since s is Selmer, ϕ∗(s) ∈ H1(GQ,U(Qp)) lies in the Selmer
scheme Sel∞(X/Q).

Take ℓ = p in the above diagram and restrict to Selmer elements:

s ∈ Sec(X/Q)Sel Sel∞(X/Q)(Qp)

xp ∈ X (Qp) H1(Gp,Π) H1(Gp,U(Qp))

ϕ∗

locp locp

ϕ∗

Hence
jp(xp) = locp(ϕ∗(s)) ∈ locp(Sel∞(X/Q)),

and so xp ∈ X (Qp)∞ as claimed.
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If Kim’s Conjecture holds for (X , p) for all p ∈ P, then the
preceding claim shows that each

xp ∈ X (Q) ⊆ X (Qp)

is one of the finitely many rational points on X . Two questions:
1. Must the rational points xp for p ∈ P be the same?
2. Even if the rational points xp are the same rational point x ,

must s be the section associated to x?
These are both resolved using a theorem of Stoll.

Theorem (Harari–Stix, 2012)

(xp)p ∈ X (Af
Q) is the adelic point associated to a Selmer section s

if and only if (xp)p ∈ X (Af
Q)

fcov lies in the finite descent locus.

Theorem of the Diagonal (Stoll, 2007)

Let Z ⊂ X be a finite subscheme, and let (xp)p ∈ X (Af
Q)

fcov be an
adelic point in the finite descent locus. If xp ∈ Z (Qp) for a
density 1 set of primes p, then (xp)p ∈ Z (Q) is a rational point
of Z .
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Now return to the setting that (xp)p is the adelic point associated
to a Selmer section s, so (xp)p ∈ X (Af

Q)
fcov, and assume

that xp ∈ X (Q) for all p ∈ P.

Claim
There is a rational point x ∈ X (Q) such that xp = x for all p.

Proof : Apply the Theorem of the Diagonal to the finite
subscheme Z consisting of the rational points of X .
Claim
s is the section attached to x .

Proof (sketch): It suffices to prove that s is the section attached
to some rational point. According to a theorem of Tamagawa, it is
equivalent to show that for every finite étale covering π : X ′ → X
such that s lifts to a section s ′ ∈ Sec(X ′/Q), we have X ′(Q) ̸= ∅.
The section s ′ is automatically Selmer, and its associated adelic
point (x ′p)p satisfies x ′p ∈ π−1(x)(Qp) for all p. Applying the
Theorem of the Diagonal to π−1(x) shows that X ′(Q) ̸= ∅.
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3. Proof of Theorem B
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Theorem B, recap

Theorem B
Let Y = P1

Z[1/2] ∖ {0, 1,∞} be the thrice-punctured line
over Z[1/2]. Then Kim’s Conjecture holds for (Y, {2}, p) for all
odd primes p.

From now on, we fix Y = P1
Z[1/2] ∖ {0, 1,∞}, S = {2} and p an

odd prime. We write Y = YQ.

Recall that Kim’s conjecture says that the inclusion

Y(Z[1/2]) ⊆ Y(Zp){2},∞

is an equality.

Note that Z[1/2]× = {±2n : n ∈ Z} and

Y(Z[1/2]) = {z ∈ Z[1/2]× s.t. 1 − z ∈ Z[1/2]×} = {2,−1, 1
2}.
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Components of the Selmer scheme

Consider the mod 2 reduction map

red2 : Y (Q2) ⊆ P1(Q2) = P1(Z2) ↠ P1(F2).

For each cusp Σ ∈ {0, 1,∞} define

Y(Z[1/2])Σ := {z ∈ Y(Z[1/2]) : red2(z) ∈ Y ∪ {Σ}}.

This partitions the Z[1/2]-integral points into

Y(Z[1/2]) = Y(Z[1/2])0 ∪ Y(Z[1/2])1 ∪ Y(Z[1/2])∞.

This corresponds to the irreducible components of the Selmer
scheme:

Sel∞(Y/Z[1/2]) = Sel∞(Y/Z[1/2])0∪Sel∞(Y/Z[1/2])1∪Sel∞(Y/Z[1/2])∞.
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Reduction to the 1-component

Accordingly, the Chabauty–Kim locus is a union of three subsets

Y(Zp){2},∞ = Y(Zp)
0
{2},∞ ∪ Y(Zp)

1
{2},∞ ∪ Y(Zp)

∞
{2},∞.

We have Y(Z[1/2])Σ ⊆ Y(Zp)
Σ
{2},∞, conjecturally an equality.

The automorphisms of P1
Z[1/2] ∖ {0, 1,∞},

z ,
1
z
, 1 − z ,

1
1 − z

,
z − 1
z

,
z

z − 1
,

permute the three cusps transitively. By exploiting this, it suffices
to take Σ = 1 and prove that

{−1} = Y(Z[1/2])1 ⊆ Y(Zp)
1
{2},∞

is an equality.
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The localisation map

It suffices to replace the full fundamental group U with its
polylogarithmic quotient UPL. Prior work by Corwin–Dan-Cohen
implies that the localisation map

locp : SelPL(Y/Z[1/2])1 → H1
f (Gp,UPL)

is given by

locp : SpecQp[y , z3, z5, z7, . . .] → SpecQp[log, Li1, Li2, Li3, . . .],

loc♯p log = 0,

loc♯p Li1 = log(2)y ,

loc♯p Li2 = 0,

loc♯p Li3 = ζ(3)z3,

loc♯p Li4 = 0,

loc♯p Li5 = ζ(5)z5,
...
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Coleman functions vanishing on the Chabauty–Kim locus

We find infinitely many functions on H1
f (Gp,UPL) which vanish on

the image of the Selmer scheme. Pulling back the functions along
jp shows:

Proposition
The following functions vanish on the Chabauty–Kim locus
Y(Zp)

1
{2},∞:

log(z) and Lik(z) for k ≥ 2 even.

Here, log and Lik are p-adic analytic functions on Y(Zp) defined as
iterated Coleman integrals:

log(z) =

∫ z

0

dz

z
, Lik(z) =

∫ z

0

dz

z
· · · dz

z

dz

1 − z︸ ︷︷ ︸
k

.
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Proof of Kim’s conjecture

We are reduced to proving:

Proposition
The only common zero in Y(Zp) of the functions log(z) and Lik(z)
for k ≥ 2 even is z = −1.

log(z) = 0 implies that z is a (p − 1)-st root of unity in Zp.

Lik has a mod-p variant lik : Fp → Fp given by

lik(z) =

p−1∑
i=1

z i

ik
.

Lik(z) = 0 implies lik(z) = 0. Take k = p− 3 and use little Fermat:

lip−3(z) =

p−1∑
i=1

i−(p−3)z i =

p−1∑
i=1

i2z i = z(z + 1)(z − 1)p−3.
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Proof of Kim’s conjecture

At this point we have:
(1) z ∈ Y(Zp)

(2) z is a (p − 1)-st root of unity
(3) z := z mod p is a zero of lip−3(z) = z(z + 1)(z − 1)p−3

(3) implies z ∈ {0,−1, 1}.

But by (1), z is in Y(Fp) = Fp ∖ {0, 1}, so z = −1.

Finally, (2) implies z = −1.

This shows that

{−1} = Y(Z[1/2])1 ⊆ Y(Zp)
1
{2},∞

is an equality, hence Kim’s conjecture holds.
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4. Summary
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Summary of main results

Theorem A
Let Y/ZS be a hyperbolic curve whose smooth completion has a
Q-rational point. Suppose that Kim’s Conjecture holds
for (Y,S , p) for p in a set P of primes of Dirichlet density 1. Then
the S-Selmer Section Conjecture holds for (Y, S).

Theorem B
Let Y = P1

Z[1/2] ∖ {0, 1,∞} be the thrice-punctured line
over Z[1/2]. Then Kim’s Conjecture holds for (Y, {2}, p) for all
odd primes p.

Further reading: Chabauty–Kim and the Section Conjecture for
locally geometric sections (arXiv:2305.09462)
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Thank you for listening
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