Affine Chabauty I

Martin Lüdtke, MPIM Bonn joint work in progress with Marius Leonhardt 30th June 2025

33èmes Journées Arithmétiques, Luxembourg

Motivating question: given $f(x, y) \in \mathbb{Z}[x, y]$, solve f(x, y) = 0 in \mathbb{Z} .

For example, what are the integer solutions to

$$y^2 = x^6 + 2x^5 - 7x^4 - 18x^3 + 2x^2 + 20x + 9?$$

More generally, what are the solutions in $\mathbb{Z}_{S} = \mathbb{Z}[\frac{1}{\ell} : \ell \in S]$ for a finite set of primes *S*?

Geometric formulation: an equation f(x, y) = 0describes an affine curve \mathcal{Y} in $\mathbb{A}^2_{\mathbb{Z}}$, the solutions in \mathbb{Z}_S form the set $\mathcal{Y}(\mathbb{Z}_S)$ of *S*-integral points.

The Siegel–Mahler Theorem

Setup:

- + X/\mathbb{Q} smooth projective curve of genus g
- $D \subseteq X$ finite set of closed points ("cusps"), $n = \#D(\overline{\mathbb{Q}}) > 0$
- $Y = X \setminus D$ affine curve
- \mathcal{X}/\mathbb{Z} regular model of X
- ${\mathcal D}$ the closure of ${\pmb D}$ in ${\mathcal X}$
- * $\mathcal{Y} = \mathcal{X} \smallsetminus \mathcal{D}$ model of Y
- S finite set of primes, $\mathbb{Z}_S = \mathbb{Z}[\frac{1}{\ell} : \ell \in S]$ ring of S-integers

Theorem (Siegel, Mahler)

If 2-2g-n < 0 then $\#\mathcal{Y}(\mathbb{Z}_{\mathcal{S}}) < \infty$.

Goal: determine $\mathcal{Y}(\mathbb{Z}_{\mathcal{S}})$ or bound $\#\mathcal{Y}(\mathbb{Z}_{\mathcal{S}})$ in practice

Chabauty-Coleman

The analogous problem for rational points on curves of genus \geq 2 can often be solved by the Chabauty–Coleman method.

Mordell Conjecture (1922)

If $g \geq 2$ then $\#X(\mathbb{Q}) < \infty$.

- Chabauty (1941): proved finiteness if $r := \operatorname{rk} \operatorname{Jac}_X(\mathbb{Q}) < g$
- Faltings (1983): proved finiteness in general

Theorem (Coleman, 1985)

Let p be a prime of good reduction for X and fix a base point $P_0 \in X(\mathbb{Q})$. If r < gthen there exists a computable differential form $0 \neq \omega \in H^0(X_{\mathbb{Q}_p}, \Omega^1)$ such that

$$X(\mathbb{Q})\subseteq \left\{P\in X(\mathbb{Q}_p): \int_{P_0}^P\omega=0
ight\}\subseteq X(\mathbb{Q}_p).$$

The Chabauty–Coleman method produces a finite computable subset of $X(\mathbb{Q}_p)$ containing $X(\mathbb{Q})$. We develop a Chabauty–Coleman method for *S*-integral points on affine curves.

Differences:

- use logarithmic differential forms ω ∈ H⁰(X_{Q_p}, Ω¹(D)), i.e., simple poles at cusps are allowed
- partition S-integral points by (finitely many) reduction types

$$\mathcal{Y}(\mathbb{Z}_{\mathcal{S}}) = \coprod_{\Sigma} \mathcal{Y}(\mathbb{Z}_{\mathcal{S}})_{\Sigma}$$

and look at each $\mathcal{Y}(\mathbb{Z}_{\mathcal{S}})_{\Sigma}$ separately

• Jacobian is replaced by the generalised Jacobian

Main Theorem

Notation:

- $p \notin S$ prime of good reduction for X
- $P_0 \in Y(\mathbb{Q})$ base point
- $n = n_1(D) + 2n_2(D)$ with $n_1(D) = \#D(\mathbb{R}), n_2(D) = \frac{1}{2} \#(D(\mathbb{C}) \setminus D(\mathbb{R}))$

Theorem (Leonhardt-L., 2025+)

Assume the Affine Chabauty Condition (ACC)

 $r + \#S < g + \#|D| + n_2(D) - 1.$

Then for each reduction type Σ there exists a computable log differential $0 \neq \omega \in H^0(X_{\mathbb{Q}_p}, \Omega^1(D))$ and constant $c \in \mathbb{Q}_p$ such that

$$\mathcal{Y}(\mathbb{Z}_{\mathcal{S}})_{\Sigma} \subseteq \left\{ \boldsymbol{P} \in \mathcal{Y}(\mathbb{Z}_{\mathcal{P}}) : \int_{\boldsymbol{P}_{0}}^{\boldsymbol{P}} \omega = \boldsymbol{c}
ight\} \subseteq \mathcal{Y}(\mathbb{Z}_{\mathcal{P}}).$$

Idea of proof

Generalised Jacobian J_Y of Y:

$$J_{\mathsf{Y}}(\mathbb{Q}) = \mathsf{Div}^{\mathsf{0}}(\mathsf{Y}) \ \big/ \ \big\{ \mathrm{div}(f) : f \in k(X)^{ imes}, f|_{D} = \mathsf{1} \big\}$$

Abel–Jacobi embedding AJ_{P_0} : $Y \hookrightarrow J_Y$, $P \mapsto [P] - [P_0]$.

Affine Chabauty diagram:

Key insight: $J_Y(\mathbb{Q})$ is not finitely generated but the Abel–Jacobi image of $\mathcal{Y}(\mathbb{Z}_S)_{\Sigma}$ is contained in a subset Sel(P_0, Σ), a translate of a f. g. subgroup of rank

$$\mathsf{rk}\,\mathsf{Sel}(P_0,\Sigma) = r + n_1(D) + n_2(D) - \#|D| + \#S \overset{(\mathsf{ACC})}{<} g + n - 1 = \dim_{\mathbb{Q}_p} \mathsf{H}^0(X_{\mathbb{Q}_p},\Omega^1(D)) \quad \mathsf{6}$$

Arithmetic intersection theory

The Abel–Jacobi image of $\mathcal{Y}(\mathbb{Z}_S)_{\Sigma}$ in $J_Y(\mathbb{Q})$ is constrained using intersection theory on the arithmetic surface \mathcal{X} . We construct the *D*-intersection map

$$egin{aligned} & \sigma_\ell\colon J_Y(\mathbb{Q}) o Z_0(\mathcal{D}_{\mathbb{F}_\ell})/[\mathcal{D}_{\mathbb{F}_\ell}]\otimes_\mathbb{Z}\mathbb{Q},\ & F\mapsto \sum_{x\in |\mathcal{D}_{\mathbb{F}_\ell}|}i_x(\Psi_\ell(F),\mathcal{D})[x] \end{aligned}$$

such that $\sigma_{\ell}(AJ_{P_0}(P))$ depends only on:

- the component of $\mathcal{X}_{\mathbb{F}_{\ell}}$ onto which *P* reduces
- intersection multiplicities $i_x(\mathcal{P}, \mathcal{D})$ with the boundary divisor at $x \in |\mathcal{X}_{\mathbb{F}_\ell}|$ $(\ell \in S)$

Here, $\Psi_{\ell}(F)$ = horizontal extension \mathcal{F} + a vertical \mathbb{Q} -divisor $\Phi_{\ell}(F)$

The reduction type $\Sigma = (\Sigma_{\ell})_{\ell}$ prescribes for each ℓ the component of $\mathcal{X}_{\mathbb{F}_{\ell}}$ or (if $\ell \in S$) the cusp onto which the point reduces. We get

 $\sigma_{\ell}(\mathsf{AJ}_{P_0}(\mathcal{Y}(\mathbb{Z}_S)_{\Sigma})) \subseteq \mathfrak{S}_{\ell}(P_0, \Sigma) \text{ of rank 0 } (\ell \notin S) \text{ or 1 } (\ell \in S).$

Define the Selmer set

$$\mathsf{Sel}(P_0, \Sigma) \coloneqq \{F \in J_Y(\mathbb{Q}) \mid \forall \ell : \sigma_\ell(F) \in \mathfrak{S}_\ell(P_0, \Sigma)\}$$

then $\operatorname{Sel}(P_0, \Sigma)$ contains the Abel–Jacobi image of $\mathcal{Y}(\mathbb{Z}_S)_{\Sigma}$ and is a translate of a subgroup of small finite rank.

The end

Theorem (LL)

The integral points of the rank 2, genus 2 curve

$$y^2 = x^6 + 2x^5 - 7x^4 - 18x^3 + 2x^2 + 20x + 9?$$

are $(-1,\pm 1)$, $(0,\pm 3)$, $(1,\pm 3)$, $(-2,\pm 3)$, $(-4,\pm 37)$.

Proof.

Use the Affine Chabauty method with p = 5, find $0 \neq \omega \in H^0(X_{\mathbb{Q}_5}, \Omega^1(D))$ with $\mathcal{Y}(\mathbb{Z}) \subseteq \Big\{ P \in \mathcal{Y}(\mathbb{Z}_5) : \int_{(-1,1)}^{P} \omega = 0 \Big\},$

and check that the RHS only contains the listed points.

Thank you!