Non-abelian Chabauty for the thrice-punctured line

Martin Lüdtke

Rijksuniversiteit Groningen

Belgian-Dutch Junior Algebraic Geometry seminar Leiden

14 October 2022

Introduction: The S-unit equation

Non-abelian Chabauty

Refined non-abelian Chabauty

Selmer schemes

Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

Further developments in higher depth
j/w Alex Best, Alex Betts, Theresa Kumpitsch, Angus McAndrew, Lie Qian, Elie Studnia, Yujie Xu

Southwest Center
for Arithmetic Geometry
ARIZONA WINTER SCHOOL 2020

Department of Mathematics
The University of Arizona

Deadline to apply for funding: November 8, 2019
http://swc.math.arizona.edu
NONABELIAN CHABAUTY

Jennifer Balakrishnan

Computational tools for quadratic Chabauty
Bas Edixhoven
Geometric quadratic Chabauty
Minhyong Kim
Foundations of nonabelian Chabauty
David Zureick-Brown
Classical Chabauty
with Bjorn Poonen, Clay Lecturer
TUCSON, MARCH 7-11, 2020

Funded by the National Science Foundation Supported by the National Security Agency Organized in partnership with the Clay Mathematics Institute

1. Introduction: The S-unit equation

The S-unit equation

Setup:

- S finite set of primes
- $\mathbb{Z}_{S}=\left\{n \in \mathbb{Q}: v_{p}(n) \geq 0 \forall p \notin S\right\}$ ring of S-integers
- $\mathbb{Z}_{S}^{\times}=\left\{n \in \mathbb{Q}^{\times}\right.$containing only prime factors in $\left.S\right\}$

$$
=\left\{ \pm \prod_{\ell \in S} \ell^{e_{\ell}}: e_{\ell} \in \mathbb{Z}\right\}
$$

group of S-units

S-unit equation

$$
x+y=1 \quad \text { with } x, y \in \mathbb{Z}_{S}^{\times}
$$

Solutions are S-units x such that $1-x$ is also an S-unit.

The S-unit equation

S-unit equation

$$
x+y=1 \quad \text { with } x, y \in \mathbb{Z}_{S}^{\times}
$$

If x is a solution, so are $1-x$ and $1 / x$, since

$$
1-1 / x=-(1-x) / x
$$

Thus, solutions come in S_{3}-orbits

$$
x, \quad 1-x, \quad \frac{1}{x}, \quad \frac{1}{1-x}, \quad \frac{x-1}{x}, \quad \frac{x}{x-1} .
$$

The S-unit equation

S-unit equation

$$
x+y=1 \quad \text { with } x, y \in \mathbb{Z}_{S}^{\times}
$$

Solutions for small sets S :

- $S=\emptyset$: no solutions
- $S=\{\ell\}, \ell$ odd: no solutions $S=\{2\}$: solutions $\{2,-1,1 / 2\}=S_{3}$-orbit of 2
- $S=\{\ell, q\}$, both odd: no solutions
$S=\{2, q\}$
- $q=2^{n}+1>3$ Fermat prime: S_{3}-orbits of 2 and q
- $q=2^{n}-1>3$ Mersenne prime: S_{3}-orbits of 2 and 2^{n}
- $q=3: S_{3}$-orbits of $2,3,4,9$
- all other q : only the S_{3}-orbit of 2

The S-unit equation

Geometric re-interpretation:
Solutions of the S-unit equation are elements of $\mathcal{X}\left(\mathbb{Z}_{S}\right)$, where

$$
\mathcal{X}=\mathbb{P}_{\mathbb{Z}_{S}}^{1} \backslash\{0,1, \infty\}
$$

Theorem (Siegel 1929)

$\mathcal{X}\left(\mathbb{Z}_{S}\right)$ is finite.

The S-unit equation

Siegel's proof was not effective:

- no method to compute $\mathcal{X}\left(\mathbb{Z}_{S}\right)$
- no upper bound on $\# \mathcal{X}\left(\mathbb{Z}_{s}\right)$

Siegel's Theorem was reproved by Minhyong Kim in 2005 using a non-abelian generalisation of Chabauty's method.

2. Non-abelian Chabauty

Non-abelian Chabauty

Fix auxiliary prime $p \notin S$.
Chabauty-Kim method yields nested sequence

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right) \supseteq \mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 1} \supseteq \mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 2} \supseteq \ldots \quad \supseteq \mathcal{X}\left(\mathbb{Z}_{S}\right)
$$

The $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}$ are zero sets of Coleman-analytic functions on $\mathcal{X}\left(\mathbb{Z}_{p}\right)$

Theorem (Kim 2005)

$\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}$ is finite for $n \gg 0$.
\Rightarrow Siegel's Theorem
(This is not known for more general curves but is implied by various standard conjectures.)

Non-abelian Chabauty

Conjecture (Kim)
$\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}=\mathcal{X}\left(\mathbb{Z}_{S}\right)$ for $n \gg 0$.
The Chabauty-Kim method can be made effective and the conjecture can be tested in some cases.
However:

- Complexity increases with n
- Larger sets S require larger depth n to get finiteness

Non-abelian Chabauty

Depth 1: shows finiteness only for $S=\emptyset$:

$$
\begin{aligned}
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\emptyset, 1} & =\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): \log (z)=\log (1-z)=0\right\} \\
& =\left\{\zeta_{\sigma}, \zeta_{6}^{-1}\right\} \cap \mathbb{Z}_{p}
\end{aligned}
$$

This agrees with $\mathcal{X}(\mathbb{Z})=\emptyset$ if and only if $p \equiv 2 \bmod 3$.

Non-abelian Chabauty

Depth 2:

Theorem (Dan-Cohen, Wewers 2015)

Explicit equations defining $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 2}$ for $\# S \leq 1$:

$$
\begin{aligned}
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\emptyset, 2} & =\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): \log (z)=\log (1-z)=\mathrm{Li}_{2}(z)=0\right\}, \\
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\{\ell\}, 2} & =\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): 2 \operatorname{Li}_{2}(z)=\log (z) \log (1-z)\right\}
\end{aligned}
$$

Here, $\mathrm{Li}_{2}(z)$ denotes the p-adic dilogarithm, i.e. the iterated
Coleman integral

$$
\mathrm{Li}_{2}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \frac{\mathrm{~d} t}{1-t}
$$

3. Refined non-abelian Chabauty

Refined Chabauty-Kim

Betts-Dogra (2019): refinement of CK method
The refined Chabauty-Kim method yields a nested sequence

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right) \supseteq \mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 1}^{\min } \supseteq \mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 2}^{\min } \supseteq \ldots \quad \supseteq \mathcal{X}\left(\mathbb{Z}_{S}\right)
$$

with

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min } \subseteq \mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}
$$

- $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min }$ may be finite even if $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}$ is not
- $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min }$ may agree with $\mathcal{X}\left(\mathbb{Z}_{S}\right)$ even if $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}$ does not

Conjecture (Refined Kim conjecture)

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min }=\mathcal{X}\left(\mathbb{Z}_{S}\right) \text { for } n \gg 0
$$

Refined Chabauty-Kim

Remark

Refined CK detects local obstructions: If $\mathcal{X}\left(\mathbb{Z}_{\ell}\right)=\emptyset$ for some $\ell \notin S$ or $\mathcal{X}\left(\mathbb{Q}_{\ell}\right)=\emptyset$ for some $\ell \in S$, then $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min }=\emptyset=\mathcal{X}\left(\mathbb{Z}_{S}\right)$ automatically.

In particular, for $\mathcal{X}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$:

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min }=\emptyset=\mathcal{X}\left(\mathbb{Z}_{S}\right) \text { whenever } 2 \notin S
$$

since $\mathcal{X}\left(\mathbb{F}_{2}\right)=\mathbb{P}^{1}\left(\mathbb{F}_{2}\right) \backslash\{0,1, \infty\}=\emptyset$, hence $\mathcal{X}\left(\mathbb{Z}_{2}\right)=\emptyset$.

Our results

Theorem (Best, Betts, Kumpitsch, L., McAndrew, Qian, Studnia, Xu (Arizona 2020)¹)

(1) Depth 1: explicit equations defining $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 1}^{\min }$ for $S=\{2\}$:

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\{2\}, 1}^{\min }=S_{3} \cdot\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): \log (z)=0\right\} .
$$

(2) Depth 2: explicit equations defining $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 2}^{\min }$ for $S=\{2\}$ and $S=\{2, q\}$:

$$
\begin{aligned}
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\{2\}, 2}^{\min } & =S_{3} \cdot\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): \log (z)=\mathrm{Li}_{2}(z)=0\right\} \\
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\{2, q\}, 2}^{\min } & =S_{3} \cdot\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): a_{2, q} \operatorname{Li}_{2}(z)=a_{q, 2} \operatorname{Li}_{2}(1-z)\right\}
\end{aligned}
$$

for certain constants $a_{2, q}, a_{q, 2} \in \mathbb{Q}_{p}$.

[^0]
Our results

Theorem (cont.)

(3) Bound on number of solutions for $p=3: \mathcal{X}\left(\mathbb{Z}_{3}\right)_{\{2, q\}, 2}^{m i n}$ consists of at most two S_{3}-orbits of points. Equality holds iff

$$
\min \left\{v_{3}\left(a_{2, q}\right), v_{3}\left(a_{q, 2}\right)\right\}=1+v_{3}(\log (q))
$$

Corollary

If $q>3$ is a Fermat or Mersenne prime, then the refined Kim conjecture holds for $S=\{2, q\}$ and $p=3$ in depth 2 :

$$
\mathcal{X}\left(\mathbb{Z}_{3}\right)_{\{2, q\}, 2}^{\min }=\mathcal{X}\left(\mathbb{Z}\left[\frac{1}{2 q}\right]\right)
$$

Our results

The coefficients $a_{2, q}, a_{q, 2}$ can be calculated algorithmically. We implemented ${ }^{2}$ the algorithm in SAGE and used the criterion (\dagger) to verify:

Theorem (BBKLMcAQSX)

The refined Kim conjecture holds in depth 2 for $S=\{2, q\}$ and $p=3$ when q is one of

$$
\begin{aligned}
& 19,37,53,107,109,163,181,199,269,271,379 \\
& 431,433,487,523,541,577,593,631,701,739 \\
& 757,809,811,829,863,883,919,937,971,991 .
\end{aligned}
$$

[^1]
4. Selmer schemes

Selmer schemes

The sets $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{s, n}$ are defined using a diagram as follows:

$$
\begin{aligned}
& \mathcal{X}\left(\mathbb{Z}_{S}\right) \longleftrightarrow \mathcal{X}\left(\mathbb{Z}_{p}\right) \\
& j_{s} \downarrow \quad{ }^{j_{p}} \\
& \operatorname{Sel}_{S, n}(\mathcal{X}) \xrightarrow[\operatorname{loc}_{p}]{\longrightarrow} \mathrm{H}_{\mathrm{f}}^{1}\left(G_{p}, U_{n}^{\text {ét }}\right)
\end{aligned}
$$

The localisation map loc_{p} is an algebraic map between (the \mathbb{Q}_{p}-points of) affine spaces over \mathbb{Q}_{p}.

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}=\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): j_{p}(z) \in \operatorname{loc}_{p}\left(\operatorname{Sel}_{S, n}(\mathcal{X})\right)\right\}
$$

Selmer schemes

$$
\begin{array}{cc}
\mathcal{X}\left(\mathbb{Z}_{S}\right) & \longrightarrow \mathcal{X}\left(\mathbb{Z}_{p}\right) \\
j_{s} \mid \\
\operatorname{Sel}_{S, n}(\mathcal{X}) \underset{\operatorname{loc}_{p}}{ } & \downarrow^{j_{p}} \\
H_{f}^{1}\left(G_{p}, U_{n}^{\text {et }}\right)
\end{array}
$$

Theorem

If the localisation map loc p is not dominant, then $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}$ is finite.

Proof (Sketch).

If $\operatorname{loc}_{p}\left(\operatorname{Sel}_{S, n}(\mathcal{X})\right)$ is not Zariski-dense, there exists a function $f \neq 0$ on $\mathrm{H}_{\mathrm{f}}^{1}\left(G_{p}, U_{n}^{\text {ét }}\right)$ vanishing on $\operatorname{loc}_{p}\left(\operatorname{Sel}_{S, n}(\mathcal{X})\right)$. Then $f \circ j_{p}$ is nonzero and p-adic analytic on each residue disk of $\mathcal{X}\left(\mathbb{Z}_{p}\right)$. It has only finitely many zeroes and vanishes on $\mathcal{X}\left(\mathbb{Z}_{S}\right)$.

Selmer schemes

$$
\begin{gathered}
\mathcal{X}\left(\mathbb{Z}_{S}\right) \\
j_{s} \mid \\
\operatorname{Sel}_{S, n}(\mathcal{X}) \underset{\operatorname{loc}_{p}}{\longrightarrow} \mathrm{H}_{\mathrm{f}}^{1}\left(\mathbb{Z}_{p}, \mathbb{U}_{n}^{j_{p}}\right)
\end{gathered}
$$

Remark

The schemes $\operatorname{Sel}_{S}(\mathcal{X})$ and $\mathrm{H}_{\mathrm{f}}^{1}\left(G_{p}, U^{e ́ t}\right)$ are moduli spaces of torsors under the \mathbb{Q}_{p}-prounipotent étale fundamental group $\pi_{1}^{\mathbb{Q}_{p}}\left(X_{\overline{\mathbb{Q}}}, b\right)$ (for some base point $b \in \mathcal{X}\left(\mathbb{Z}_{S}\right)$), and the vertical maps j_{s} and j_{p} assign to each point x of \mathcal{X} its path torsor:

$$
x \mapsto \pi_{1}^{\mathbb{Q}_{p}}\left(X_{\overline{\mathbb{Q}}} ; b, x\right)
$$

Working in depth n corresponds to replacing the fundamental group by its n-th lower central series quotient.

Refined Selmer schemes

We also have ℓ-adic localisation maps for $\ell \in S$:

$$
\begin{array}{cc}
\mathcal{X}\left(\mathbb{Z}_{S}\right) & \longrightarrow X\left(\mathbb{Q}_{\ell}\right) \\
\downarrow^{j s} & \downarrow^{j_{\ell}} \\
\operatorname{Sel}_{S, n}(\mathcal{X}) & \xrightarrow{\text { loc }_{\ell}} \\
\mathrm{H}^{1}\left(G_{\ell}, U_{n}^{\text {ét }}\right) .
\end{array}
$$

The refined Selmer scheme is defined as the subscheme
Sel $_{S, n}^{\min }(\mathcal{X}) \subseteq$ Sel $_{S, n}(\mathcal{X})$ of points α satisfying local conditions at primes in S :

$$
\operatorname{loc}_{\ell}(\alpha) \in j_{\ell}\left(X\left(\mathbb{Q}_{\ell}\right)\right)^{\mathrm{Zar}} \quad \text { for all } \ell \in S
$$

Then we can define the refined Chabauty-Kim locus

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, n}^{\min }=\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right): j_{p}(z) \in \operatorname{loc}_{p}\left(\operatorname{Sel}_{S, n}^{\min }(\mathcal{X})\right)\right\} .
$$

5. Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

For the thrice-punctured line, the Selmer scheme in depth 2 is given by

$$
\operatorname{Sel}_{S, 2}(\mathcal{X})=\mathbb{A}^{S} \times \mathbb{A}^{S} .
$$

The localisation map for $\ell \in S$ is the projection

$$
\begin{aligned}
\operatorname{loc}_{\ell}: \mathbb{A}^{S} \times \mathbb{A}^{S} & \rightarrow \mathbb{A}^{2} \\
\left(\left(x_{\ell}\right)_{\ell \in S},\left(y_{\ell}\right)_{\ell \in S}\right) & \mapsto\left(x_{\ell}, y_{\ell}\right) .
\end{aligned}
$$

Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

The map $j_{\ell}: X\left(\mathbb{Q}_{\ell}\right) \rightarrow \mathbb{A}^{2}$ is given by

$$
j_{\ell}(z)=\left(v_{\ell}(z), v_{\ell}(1-z)\right)
$$

Lemma

$j_{\ell}\left(X\left(\mathbb{Q}_{\ell}\right)\right)^{\mathrm{Zar}}=\{x=0\} \cup\{y=0\} \cup\{x=y\}$ in \mathbb{A}^{2}

Proof.

If $z \in X\left(\mathbb{Q}_{\ell}\right)$, then $z+z^{\prime}=1$ with $z, z^{\prime} \in \mathbb{Q}_{\ell}^{\times}$.
Then $0=v_{\ell}(1) \geq \min \left\{v_{\ell}(z), v_{\ell}\left(z^{\prime}\right)\right\}$ with equality if $v_{\ell}(z) \neq v_{\ell}\left(z^{\prime}\right)$.

$$
\Rightarrow v_{\ell}(z)=0 \quad \text { or } \quad v_{\ell}\left(z^{\prime}\right)=0 \quad \text { or } \quad v_{\ell}(z)=v_{\ell}\left(z^{\prime}\right)
$$

Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

Thus, the refined Selmer scheme $\operatorname{Sel}_{S, 2}^{\min }(\mathcal{X})$ in depth 2 is the union of $3^{\# S}$ linear subspaces of $\mathbb{A}^{S} \times \mathbb{A}^{S}$ of dimension $\# S$, given by refinement conditions

$$
x_{\ell}=0 \text { resp. } y_{\ell}=0 \text { resp. } x_{\ell}=y_{\ell}
$$

for each $\ell \in S$.

Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

Dan-Cohen, Wewers:

$$
\operatorname{loc}_{p}\left(\left(x_{\ell}\right)_{\ell \in S},\left(y_{\ell}\right)_{\ell \in S}\right)=\left(\begin{array}{c}
\sum_{\ell \in S} \log (\ell) x_{\ell} \\
\sum_{\ell \in S} \log (\ell) y_{\ell} \\
\sum_{\ell, q \in S} a_{\ell, q} x_{\ell} y_{q}
\end{array}\right)
$$

Chabauty-Kim for $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ in depth 2

If $S=\{2, q\}$, then the localisation map

$$
\operatorname{loc}_{p}: \mathbb{A}^{S} \times \mathbb{A}^{S} \rightarrow \mathbb{A}^{3}
$$

has Zariski-dense image.
However, the refined Selmer scheme has dimension $\# S=2$, hence its image in \mathbb{A}^{3} is not Zariski-dense.
If $f=0$ is a nontrivial equation on \mathbb{A}^{3} vanishing on $\operatorname{loc}_{p}\left(\operatorname{Sel}_{S, 2}^{\min }(\mathcal{X})\right)$, then pulling back along $j_{p}: \mathcal{X}\left(\mathbb{Z}_{p}\right) \rightarrow \mathbb{A}^{3}$ gives a nontrivial equation cutting out $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{S, 2}^{\text {min }}$:

$$
a_{2, q} \operatorname{Li}_{2}(z)=a_{q, 2} \operatorname{Li}_{2}(1-z)
$$

6. Further developments in higher depth

Kim's conjecture in higher depth

With Alex Betts and Theresa Kumpitsch, building on work by Corwin and Dan-Cohen, we are looking at higher depth.

Theorem (Betts, Kumpitsch, L. 2021)

1. The Kim conjecture holds for $S=\emptyset$ and all odd primes $p>3$ in depth $n=p-3$.
2. The refined Kim conjecture holds for $S=\{2\}$ and all odd primes $p>3$ in depth $n=p-3$.

In the second case, equations for $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{\{2\}, p-3}^{\min _{2}}$ (up to S_{3}-orbits) are given by

$$
\log (z)=0, \quad \operatorname{Li}_{k}(z)=0 \text { for } 2 \leq k \leq p-3 \text { even. }
$$

Selmer section conjecture

Let X / \mathbb{Q} be a smooth hyperbolic curve, $b \in X(\mathbb{Q})$, and let $\pi_{1}^{\text {et }}(X, b)$ be the profinite étale fundamental group. Every point $x \in X(\mathbb{Q})$ induces a Galois section $s_{X}: G_{\mathbb{Q}} \rightarrow \pi_{1}^{\text {ett }}(X, b)$:

Conjecture (Grothendieck 1986)

The map

$$
X(\mathbb{Q}) \rightarrow\binom{\text { conjugacy classes }}{\text { of sections of } \mathrm{pr}_{*}}
$$

is a bijection.

Selmer section conjecture

Let $\mathcal{X} / \mathbb{Z}_{S}$ be a smooth regular model of X / \mathbb{Q} and $b \in \mathcal{X}\left(\mathbb{Z}_{S}\right)$.

Conjecture (Selmer section conjecture)

Let $s: G_{\mathbb{Q}} \rightarrow \pi_{1}(X, b)$ be a Galois section such that for every prime ℓ, the restriction of s to the local Galois group G_{ℓ} is induced by a point

$$
\begin{cases}\text { in } X\left(\mathbb{Q}_{\ell}\right) & \text { if } \ell \in S \\ \text { in } \mathcal{X}\left(\mathbb{Z}_{\ell}\right) & \text { if } \ell \notin S\end{cases}
$$

Then s is induced by a point in $\mathcal{X}\left(\mathbb{Z}_{S}\right)$.

Selmer section conjecture

Theorem (Betts, Kumpitsch, L. (in progress))

If $\mathcal{X} / \mathbb{Z}_{S}$ satisfies the refined Kim conjecture, then it satisfies the Selmer section conjecture.

Corollary

$$
\begin{aligned}
& \mathcal{X}=\mathbb{P}_{\mathbb{Z}_{S}}^{1} \backslash\{0,1, \infty\} \text { satisfies the Selmer section conjecture for } \\
& S=\emptyset \text { and for } S=\{2\} .
\end{aligned}
$$

Uniform bounds in the S-unit equation

Consider the localisation map

$$
\operatorname{loc}_{p}: \operatorname{Sel}_{S, n}^{\min }(\mathcal{X}) \rightarrow \mathrm{H}_{f}^{1}\left(G_{p}, U_{n}^{\text {ét }}\right)
$$

Betts (2021): The rings of functions on both schemes have a weight filtration by finite-dimensional subspaces, and the map

$$
\operatorname{loc}_{p}^{\sharp}: \mathcal{O}\left(\mathrm{H}_{f}^{1}\left(G_{p}, U_{n}^{\text {et }}\right)\right) \rightarrow \mathcal{O}\left(\operatorname{Sel}_{S, n}^{\min _{n}}(\mathcal{X})\right)
$$

is filtered. Any $f \neq 0$ in the kernel with weight $\leq m$ yields a Coleman function of weight $\leq m$ vanishing on $\mathcal{X}\left(\mathbb{Z}_{S}\right)$. Its number of zeroes is bounded in terms of m.

Uniform bounds in the S-unit equation

Theorem (Leonhardt, L. (2022))
Let $\mathcal{X}=\mathbb{P}_{\mathbb{Z}_{S}}^{1} \backslash\{0,1, \infty\}$. There exists a constant $\gamma>0$ such that

$$
\# \mathcal{X}\left(\mathbb{Z}_{S}\right) \leq e^{\gamma s^{2} \log (s)^{2}},
$$

where $s=\# S$.
This is worse than the bound $\# \mathcal{X}\left(\mathbb{Z}_{s}\right) \leq 3 \cdot 7^{2 s+1}$ due to Evertse.

Thank you

[^0]: ${ }^{1}$ Refined Selmer equations for the thrice-punctured line in depth two, https://arxiv.org/abs/2106. 10145

[^1]: ${ }^{2}$ https://github.com/martinluedtke/dcw_coefficients

