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1. Introduction: The S-unit equation
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The S-unit equation

Setup:
» S finite set of primes
» Zs ={ne€Q:vy(n) >0Vp¢& S} ring of S-integers
» Z¢ = {n € Q* containing only prime factors in S}

={E]lpest® e € Z}
group of S-units

S-unit equation

x+y=1 with x,y € Zg

Solutions are S-units x such that 1 — x is also an S-unit.
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The S-unit equation

S-unit equation

x+y=1 with x,y € Z¢
If x is a solution, so are 1 — x and 1/x, since
1-1/x=—(1-x)/x.

Thus, solutions come in Sz-orbits
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The S-unit equation

S-unit equation

x+y=1 with x,y € Zg

Solutions for small sets S:
» S = (): no solutions
» S ={{}, £ odd: no solutions
S = {2}: solutions {2, —1,1/2} = Sz-orbit of 2
» S ={/ q}, both odd: no solutions
S={2,q}
» g =2"41> 3 Fermat prime: Ss-orbits of 2 and ¢
» g =2"—1> 3 Mersenne prime: Sz-orbits of 2 and 2"
» g = 3: Sz-orbits of 2,3,4,9
» all other g: only the S3-orbit of 2
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The S-unit equation

Geometric re-interpretation:
Solutions of the S-unit equation are elements of X'(Zs), where

X =Py ~{0,1,00}.

Theorem (Siegel 1929)
X(Zs) is finite.
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The S-unit equation

Siegel’s proof was not effective:
» no method to compute X' (Zs)
» no upper bound on #X(Zs)

Siegel's Theorem was reproved by Minhyong Kim in 2005 using a
non-abelian generalisation of Chabauty’s method.
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2. Non-abelian Chabauty
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Non-abelian Chabauty

Fix auxiliary prime p € S.
Chabauty—Kim method yields nested sequence

X(Zp) 2 X(Zp)s1 2 X(Zp)sz2... 2 X(Ls)

The X(Zp)s n are zero sets of Coleman-analytic functions on
X(Zp)

Theorem (Kim 2005)
X(Zp)s,n is finite for n > 0.

= Siegel's Theorem

(This is not known for more general curves but is implied by various
standard conjectures.)
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Non-abelian Chabauty

Conjecture (Kim)
X(Zp)sm = X(Zs) for n > 0.

The Chabauty—Kim method can be made effective and the
conjecture can be tested in some cases.

However:
» Complexity increases with n

» Larger sets S require larger depth n to get finiteness
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Non-abelian Chabauty

Depth 1: shows finiteness only for S = (:

X(Zp)pa = {z € X(Zp) : log(z) = log(1 — z) = 0}
= {Cﬁa Cgl} N ZP'

This agrees with X'(Z) = () if and only if p = 2 mod 3.
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Non-abelian Chabauty

Depth 2:
Theorem (Dan-Cohen, Wewers 2015)

Explicit equations defining X(Zp)s» for #5 < 1:

X(Zp)po2 = {z € X(Zp) : log(z) = log(1 — z) = Lix(z) = 0},
X(Zp)iny2 ={z € X(Zp) : 2Liz(2) = log(z) log(1 — 2)}.

Here, Liz(z) denotes the p-adic dilogarithm, i.e. the iterated
Coleman integral
“dt dt

Lis(z) = [ 2L
12(2) o tl—t
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3. Refined non-abelian Chabauty
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Refined Chabauty—Kim

Betts—Dogra (2019): refinement of CK method

The refined Chabauty—Kim method yields a nested sequence
X(Zp) 2 X(Zp)3T 2 X(Zp)T3 2. 2 X(Zs)

with

X(Zp )m'n C X(Zp)s,n-

> X(Zp)2' may be finite even if X(Zp)s , is not
> X(Zp)T" may agree with X (Zs) even if X(Z,)s , does not

Conjecture (Refined Kim conjecture)
X(Zp)m'" = X(Zs) forn>>0
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Refined Chabauty—Kim

Remark

Refined CK detects local obstructions: If X(Zy) = () for some ¢ & S
or X(Q¢) = 0 for some £ € S, then X(Zp)3'n = 0 = X(Zs)

automatically.

In particular, for X = P! . {0,1,00}:
X(Zp)m'" =0 = X(Zs) whenever 2¢ S,

since X(Fp) = PL(FF,) \ {0,1,00} = 0, hence X (Zy) = 0.
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Our results

Theorem (Best, Betts, Kumpitsch, L., McAndrew, Qian,

Studnia, Xu (Arizona 2020)*)
(1) Depth 1: explicit equations defining X (Z )"“n for S = {2}:

X(Zp)35 1 = S3-{z € X(Zp) : log(z) = 0}.

(2) Depth 2: explicit equations defining X (Z )m'” for S = {2}
and S ={2,q}:

.)l,’(Zp)'{“;?’2 = S3.{z € X(Z,) : log(z) = Lip(z) =0}
X(Zp) 3y 2 = S3-{2 € X(Zp) : azqLin(2) = a2 Lia(1 — 2)}

for certain constants a2,q,3q,2 € QP.

! Refined Selmer equations for the thrice-punctured line in depth two,
https://arxiv.org/abs/2106.10145
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https://arxiv.org/abs/2106.10145

Our results

Theorem (cont.)

(3) Bound on number of solutions for p = 3: X (Zg)’{“Z'"q} , consists
of at most two Ss-orbits of points. Equality holds iff

min{vs3(a2,q), v3(aq,2)} = 1 + v3(log(q)). (1)

Corollary

If g > 3 is a Fermat or Mersenne prime, then the refined Kim
conjecture holds for S = {2, q} and p = 3 in depth 2:

X(Zs) gy 2 = X (235D
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Our results

The coefficients ap , a4,2 can be calculated algorithmically. We
implemented? the algorithm in SAGE and used the criterion (1) to
verify:

Theorem (BBKLMcAQSX)

The refined Kim conjecture holds in depth 2 for S = {2, q} and
p = 3 when q is one of

19, 37,53, 107, 109, 163, 181, 199, 269, 271, 379,
431, 433,487,523, 541,577,593, 631, 701, 739,
757,809,811, 829, 863, 883,919, 937,971, 991.

2https://github.com/martinluedtke/dcw_coefficients
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4. Selmer schemes
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Selmer schemes

The sets X'(Zp)s,n are defined using a diagram as follows:

X(Zs) ——— X(Zp)

J'sl |

Selsn(X) —— Hf (Gp, U
oCp

The localisation map loc,, is an algebraic map between (the
Qp-points of) affine spaces over Q.

X(Zp)s.n = {2z € X(Zp) : jp(2) € locy(Sels (X))}
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Selmer schemes

X(Zs) — X(Zp)

J'sl |

Sels n(X) —-— Hi(Gp, UY)
oCp

If the localisation map loc,, is not dominant, then X (Zyp)s . is finite.

Proof (Sketch).

If locy(Sels (X)) is not Zariski-dense, there exists a function f # 0
on H{(Gp, UE) vanishing on loc,(Sels »(X)). Then f o j, is
nonzero and p-adic analytic on each residue disk of X'(Z,). It has
only finitely many zeroes and vanishes on X (Zs). Ol
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Selmer schemes

X(Ls) ———— X(Zp)

J’sl i

Sels n(X) —— HF(Gp, US)
oCp

Remark
The schemes Sels(X) and H} (G, U®t) are moduli spaces of torsors

under the Qp-prounipotent étale fundamental group ;" (X@, b)
(for some base point b € X(Zs)), and the vertical maps js and j,
assign to each point x of X its path torsor:

X = ﬂ?p (Xgi b: x).

Working in depth n corresponds to replacing the fundamental group
by its n-th lower central series quotient.
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Refined Selmer schemes

We also have f-adic localisation maps for £ € S:

X(Zs) ——— X(Q)

ljs l.l'e

Sels n(X) —245 HY(Gy, UE).

The refined Selmer scheme is defined as the subscheme
Selm'“( ) C Sels n(X) of points « satisfying local conditions at
primes in S:

locg(a) € jo(X(Qg))? forall £ € S.
Then we can define the refined Chabauty—Kim locus

X(Zp)T0 = {2 € X(Zp)  jol2) € locy(SeIT(X))}.
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5. Chabauty—Kim for P* . {0,1, 00} in depth 2
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Chabauty—Kim for P! \. {0, 1,00} in depth 2

For the thrice-punctured line, the Selmer scheme in depth 2 is given
by
Sels2(X) = A® x A®.

The localisation map for £ € S is the projection
locs: A° x A® — A2

((xe)ees, (ve)ees) — (xe, ye)-
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Chabauty—Kim for P! \. {0, 1,00} in depth 2

The map jio: X(Qy) — A2 is given by
Je(z) = (ve(2), ve(1 = 2)).
Je(X(Q)% = {x =0} U{y =0} U {x =y} in A?

If z € X(Q), then z+ 2/ =1 with z, 2/ € Q.
Then 0 = vp(1) > min{v,(z), v,(2’)} with equality if vy(z) # ve(2').

= v(z) =0 or vw(Z)=0 or v(z)=w(). O
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Chabauty—Kim for P! \. {0, 1,00} in depth 2

Thus, the refined Selmer scheme Selg‘jé‘(z‘() in depth 2 is the union
of 3#5 linear subspaces of A° x AS of dimension #S5, given by
refinement conditions

xp =0 resp. yy =0 resp. xp = yp

for each 7 € S.
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Chabauty—Kim for P! \. {0, 1,00} in depth 2

Dan-Cohen, Wewers:

z X(Zs) — X(Zp) z
l jsl ij l
log(2)
(ve(2))ees, (ve(l = 2))es  A® x A® — A3 log(1 — z)
’ — Lix(2)

>_es 10g(£)xe
locy((xe)ees, (Ve)ees) = | Dses log(€)ye

ZE,QES azvqxqu
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Chabauty—Kim for P! \. {0, 1,00} in depth 2

If S = {2, q}, then the localisation map
locp: A® x AS — A3

has Zariski-dense image.

However, the refined Selmer scheme has dimension #S = 2, hence
its image in A3 is not Zariski-dense.

If f =0 is a nontrivial equation on A3 vanishing on

loc,(Sel?'3 (X)), then pulling back along j,: X(Zp) — A3 gives a

nontrivial equation cutting out X' (Z, ?Z‘:

az.q Lig(z) = dg,2 Li2(1 — Z).
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6. Further developments in higher depth
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Kim's conjecture in higher depth

With Alex Betts and Theresa Kumpitsch, building on work by
Corwin and Dan-Cohen, we are looking at higher depth.

Theorem (Betts, Kumpitsch, L. 2021)
1. The Kim conjecture holds for S = () and all odd primes p > 3
in depth n = p — 3.
2. The refined Kim conjecture holds for S = {2} and all odd
primes p > 3 in depth n = p — 3.

In the second case, equations for /'\f(Z,,)f{“z.ii1 p—3 (up to Sz-orbits)
are given by

log(z) =0, Lik(z) =0for2 <k <p—3even.
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Selmer section conjecture

Let X/Q be a smooth hyperbolic curve, b € X(Q), and let
78t (X, b) be the profinite étale fundamental group. Every point
x € X(Q) induces a Galois section s,: Gg — 75t (X, b):

X m1(X, b)
Pfl \‘, x > pr,l \‘. Sx
Spec(Q) Go

Conjecture (Grothendieck 1986)
The map

x@ - (

conjugacy classes
of sections of pr,

is a bijection.
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Selmer section conjecture

Let X'/Zs be a smooth regular model of X/Q and b € X(Zs).

Conjecture (Selmer section conjecture)

Let s: Gg — m1(X, b) be a Galois section such that for every
prime £, the restriction of s to the local Galois group Gy is induced
by a point

in X(Qp) ifteS,
in X(Zy) ifl¢S.

Then s is induced by a point in X(Zs).
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Selmer section conjecture

Theorem (Betts, Kumpitsch, L. (in progress))

If X /Zs satisfies the refined Kim conjecture, then it satisfies the
Selmer section conjecture.

Corollary

X = IP’%S ~ {0,1, 00} satisfies the Selmer section conjecture for
S =10 and for S = {2}.
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Uniform bounds in the S-unit equation

Consider the localisation map
locy: SelPn(X) — HE(Gp, US).

Betts (2021): The rings of functions on both schemes have a
weight filtration by finite-dimensional subspaces, and the map

lock: O(HF(Gp, UY)) — O(Selin (X))

is filtered. Any f # 0 in the kernel with weight < m yields a
Coleman function of weight < m vanishing on X(Zs). Its number
of zeroes is bounded in terms of m.
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Uniform bounds in the S-unit equation

Theorem (Leonhardt, L. (2022))

Let X =P} _~ {0,1,00}. There exists a constant > 0 such that
#X(Ls) < 7 108
where s = #8S.

This is worse than the bound #X(Zs) < 3 - 72*1 due to Evertse.
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Thank you
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