Mixed Tate Selmer schemes beyond the polylog quotient

Martin Lüdtke joint with David Corwin and Ishai Dan-Cohen

Rijksuniversiteit Groningen
Online Selminar on Selmer schemes
22nd May 2023

1. Chabauty-Kim functions for the thrice-punctured line

Siegel's theorem

Setup:

- S : finite set of primes
- $\mathbb{Z}_{S}=\mathcal{O}(\operatorname{Spec}(\mathbb{Z}) \backslash S)$: ring of S-integers
- $X=\mathbb{P}_{\mathbb{Z}_{S}}^{1} \backslash\{0,1, \infty\}$: thrice-punctured line

Theorem (Siegel 1929)

$X\left(\mathbb{Z}_{S}\right)$ is finite.

Chabauty-Kim loci

Chabauty-Kim theory is a p-adic approach to computing $X\left(\mathbb{Z}_{S}\right)$.
For $p \notin S$, we have a Chabauty-Kim locus

$$
X\left(\mathbb{Z}_{p}\right)_{S, \infty} \subseteq X\left(\mathbb{Z}_{p}\right)
$$

- It is defined as the common vanishing set of a collection of Coleman functions on $X\left(\mathbb{Z}_{p}\right)$.
- It contains $X\left(\mathbb{Z}_{S}\right)$.
- It is finite (Kim^{1}, 2005).
- It is conjectured that $X\left(\mathbb{Z}_{p}\right)_{s, \infty}$ is exactly the set of S-integral points $X\left(\mathbb{Z}_{S}\right)$.
${ }^{1}$ The motivic fundamental group of $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ and the theorem of Siegel

Explicit equations

Finding explicit Coleman functions defining $X\left(\mathbb{Z}_{p}\right)_{S, \infty}$ is difficult in practice and has been achieved only for small S.

Theorem (Dan-Cohen-Wewers ${ }^{2}$, 2013)

Let $S=\{2\}$. The following functions vanish on $X\left(\mathbb{Z}_{p}\right)_{\{2\}, \infty}$:

$$
\begin{gathered}
2 \mathrm{Li}_{2}(z)-\log (z) L \mathrm{Li}_{1}(z) \\
\log (2) \zeta(3) L \mathrm{Li}_{4}(z)-\frac{8}{7} \mathrm{Li}_{4}(2) \log (z) L \mathrm{Li}_{3}(z) \\
-\frac{1}{24}\left(\log (2) \zeta(3)-\frac{32}{7} L \mathrm{Li}_{4}(2)\right) \log (z)^{3} L \mathrm{Li}_{1}(z)
\end{gathered}
$$

${ }^{2}$ Mixed Tate motives and the unit equation

Refined Chabauty-Kim loci

Other results use the refined Chabauty-Kim method.
For $\Sigma=\left(\Sigma_{\ell}\right)_{\ell \in S}$ with $\Sigma_{\ell} \in\{0,1, \infty\}$, define
$X\left(\mathbb{Z}_{S}\right)_{\Sigma}:=\left\{z \in X\left(\mathbb{Z}_{S}\right):(z \bmod \ell) \in X\left(\mathbb{F}_{\ell}\right) \cup\left\{\Sigma_{\ell}\right\}\right.$ for all $\left.\ell \in S\right\}$.
Note that $X\left(\mathbb{Z}_{S}\right)=\bigcup_{\Sigma} X\left(\mathbb{Z}_{S}\right)_{\Sigma}$.
The refined method produces partial Chabauty-Kim loci $X\left(\mathbb{Z}_{p}\right)_{S, \infty}^{\Sigma}$ which are conjecturally equal to $X\left(\mathbb{Z}_{s}\right)_{\Sigma}$.

Explicit refined equations for $S=\{2\}$

Theorem (Betts-Kumpitsch-L. ${ }^{3}$, 2023)

Let $S=\{2\}$. The following functions vanish on $X\left(\mathbb{Z}_{p}\right)_{\{2\}, \infty}^{(1)}$:

$$
\log (z) \quad \text { and } \quad \mathrm{Li}_{k}(z) \text { for } k \geq 2 \text { even. }
$$

Remark: In this case we can show the conjectured equality

$$
X\left(\mathbb{Z}_{p}\right)_{\{2\}, \infty}^{(1)}=\{-1\}=X(\mathbb{Z}[1 / 2])_{(1)}
$$

${ }^{3}$ Chabauty-Kim and the Section Conjecture for locally geometric sections

Explicit refined equations for $S=\{2, q\}$

Theorem
 (Best-Betts-Kumpitsch-L.-McAndrew-Qian-Studnia-Xu ${ }^{4}$, 2021)

Let $S=\{2, q\}$ for some odd prime q. The following function vanishes on $X\left(\mathbb{Z}_{p}\right)_{\{2, q\}, \infty}^{(1,0)}$:

$$
\log (2) \log (q) L i_{2}(z)-a_{q, 2} \log (z) \operatorname{Li}_{1}(z)
$$

Here, $a_{q, 2}$ is a certain computable p-adic constant.
${ }^{4}$ Refined Selmer equations for the thrice-punctured line in depth two

Polylogarithms versus multiple polylogarithms

Note that all of these functions are polynomials in polylogarithms: $\log , \mathrm{Li}_{1}, \mathrm{Li}_{2}, \ldots$. These are given by the iterated Coleman integrals

$$
\log (z)=\int_{0}^{z} \frac{\mathrm{~d} z}{z}, \quad \operatorname{Li}_{k}(z)=\int_{0}^{z} \underbrace{\frac{\mathrm{~d} z}{z} \cdots \frac{\mathrm{~d} z}{z} \frac{\mathrm{~d} z}{1-z}}_{k} .
$$

This is because all calculations so far have been restricted to working with the polylogarithmic quotient of the fundamental group of X. There are however a lot more Coleman functions on $X\left(\mathbb{Z}_{p}\right)$. Specifically, for any tuple $\left(k_{1}, \ldots, k_{r}\right), k_{i} \geq 1$, we have the multiple polylogarithm

$$
\mathrm{Li}_{k_{1}, \ldots, k_{r}}(z)=\int_{0}^{z} \underbrace{\frac{\mathrm{~d} z}{z} \cdots \frac{\mathrm{~d} z}{z} \frac{\mathrm{~d} z}{1-z}}_{k_{1}} \cdots \underbrace{\frac{\mathrm{~d} z}{z} \cdots \frac{\mathrm{~d} z}{z} \frac{\mathrm{~d} z}{1-z}}_{k_{r}} .
$$

Polylogarithms versus multiple polylogarithms

Question

Can we remove the restriction to the polylogarithmic quotient and find new Coleman functions defining Chabauty-Kim loci?

Answer

Yes. But the calculations become more complicated.
The motivic Selmer scheme for the fundamental group quotient Π is a space of \mathbb{G}_{m}-equivariant cocycles

$$
Z^{1}\left(U_{S}, \Pi\right)^{\mathbb{G}_{m}}
$$

The action of U_{S} on the polylogarithmic fundamental group is trivial, so that $Z^{1}=$ Hom. In general, we need to understand the motivic Galois action.

Explicit non-polylogarithmic functions

Theorem (Corwin-Dan-Cohen-L., 2023)

Let $S=\{2\}$. The following functions vanish on $X\left(\mathbb{Z}_{p}\right)_{\{2\}, \infty}$:

- $2 \mathrm{Li}_{2}(z)-\log (z) \mathrm{Li}_{1}(z)$,
- $\log (2) \zeta(3) \mathrm{Li}_{4}(z)-\frac{8}{7} \mathrm{Li}_{4}(2) \log (z) \mathrm{Li}_{3}(z)-$ $\frac{1}{24}\left(\log (2) \zeta(3)-\frac{32}{7} \mathrm{Li}_{4}(2)\right) \log (z)^{3} \mathrm{Li}_{1}(z)$,
- $\log (2) \zeta(3)\left(\mathrm{Li}_{3,1}(z)+\frac{1}{8} \log (z)^{2} \mathrm{Li}_{1}(z)^{2}\right)-\frac{8}{7} \mathrm{Li}_{4}(2) \log (z) \mathrm{Li}_{2,1}(z)-$ $\frac{4}{7} \mathrm{Li}_{3,1}(-1) \mathrm{Li}_{1}(z) L i_{3}(z)+\zeta(3) \frac{4}{7} \mathrm{Li}_{3,1}(-1) L i_{1}(z)$,
- $\log (2) \zeta(3) L \mathrm{i}_{2,1,1}(z)-\frac{4}{7} \mathrm{Li}_{3,1}(-1) \mathrm{Li}_{1}(z) \mathrm{Li}_{2,1}(z)-$

$$
\begin{aligned}
& \frac{1}{24}\left(\log (2) \zeta(3)-\frac{32}{7} L i_{4}(2)\right) \log (z) L i_{1}(z)^{3}+ \\
& \frac{4}{7} L i_{3,1}(-1) \zeta(3) L i_{4}(-1) L i_{1}(z) .
\end{aligned}
$$

Explicit non-polylogarithmic functions

Theorem (Corwin-Dan-Cohen-L., 2023)

Let $S=\{2\}$. The following functions vanish on $X\left(\mathbb{Z}_{p}\right)_{\{2\}, \infty}^{(1)}$:

- $\log (z)$,
- $\mathrm{Li}_{2}(z)$,
- $\mathrm{Li}_{4}(z)$,
- $\zeta(3) \log (2) \mathrm{Li}_{3,1}(z)-\frac{4}{7} \mathrm{Li}_{3,1}(-1) \mathrm{Li}_{1}(z)\left(\mathrm{Li}_{3}(z)-\zeta(3)\right)$,
- $\zeta(3) \log (2) \mathrm{Li}_{2,1,1}(z)-\frac{4}{7} \mathrm{Li}_{3,1}(-1) \mathrm{Li}_{1}(z)\left(\mathrm{Li}_{2,1}(z)-\zeta(3)\right)$.

Explicit non-polylogarithmic functions

Theorem (Corwin-Dan-Cohen-L., 2023)

Let $S=\{2, q\}$ for an odd prime q. The following functions vanish on $X\left(\mathbb{Z}_{p}\right)_{\{2, q\}, \infty}^{(1,0)}$:

- $a_{\tau_{2}} a_{\tau_{q}} L i_{2}(z)-a_{\tau_{q} \tau_{2}} \log (z) L i_{1}(z)$
$-a_{\sigma_{3}} a_{\tau_{2}} a_{\tau_{q}}^{3} \mathrm{Li}_{4}(z)-a_{\tau_{2}} a_{\tau_{q}}^{2} a_{\tau_{q} \sigma_{3}} \log (z) \operatorname{Li}_{3}(z)$
$-\left(a_{\sigma_{3}} a_{\tau_{q} \tau_{q} \tau_{q} \tau_{2}} a_{\tau_{q} \sigma_{3}}-a_{\tau_{q} \tau_{q} \tau_{2}}\right) \log (z)^{3} \operatorname{Li}_{1}(z)$,
- $a_{\tau_{2}}^{2} a_{\tau_{q}}^{2} a_{\sigma_{3}} \mathrm{Li}_{3,1}(z)-a_{\tau_{2}} a_{\tau_{q}}^{2} a_{\sigma_{3} \tau_{2}} \operatorname{Li}_{1}(z)\left(\mathrm{Li}_{3}(z)-a_{\sigma_{3}}\right)$
$-a_{\tau_{2}}^{2} a_{\tau_{q}} a_{\tau_{q} \sigma_{3}} \log (z) \operatorname{Li}_{2,1}(z)$
$-\left(a_{\sigma_{3}} a_{\tau_{q} \tau_{q} \tau_{2} \tau_{2}}-a_{\sigma_{3} \tau_{2}} a_{\tau_{q} \tau_{q} \tau_{2}}-a_{\tau_{q} \sigma_{3}} a_{\tau_{q} \tau_{2} \tau_{2}}\right) \log (z)^{2} \operatorname{Li}_{1}(z)^{2}$,
$-a_{\sigma_{3}} a_{\tau_{2}}^{3} a_{\tau_{q}} \operatorname{Li}_{2,1,1}(z)-a_{\sigma_{3} \tau_{2}} a_{\tau_{2}}^{2} a_{\tau_{q}} \operatorname{Li}_{1}(z)\left(\mathrm{Li}_{2,1}(z)-a_{\sigma_{3}}\right)$
$-\left(a_{\sigma_{3}} a_{\tau_{q} \tau_{2} \tau_{2} \tau_{2}}-a_{\sigma_{3} \tau_{2}} a_{\tau_{q} \tau_{2} \tau_{2}}\right) \log (z) \operatorname{Li}_{1}(z)^{3}$.
Here, the a_{u} are certain (hard to compute) p-adic constants.

Motivic Chabauty-Kim method

These calculations are carried out using the motivic Selmer scheme $\operatorname{Sel}_{S, \Pi}^{m o t}(X)$ for some quotient Π of the motivic fundamental group of X. It sits in a motivic Chabauty-Kim diagram as follows:

$$
\begin{aligned}
& X\left(\mathbb{Z}_{S}\right) \longleftrightarrow X\left(\mathbb{Z}_{p}\right)
\end{aligned}
$$

Strategy:

1. Show that $\operatorname{Sel}_{S, \Pi}^{m o t}(X)$ is an affine space over \mathbb{Q} with specified coordinates.
2. Describe the localisation map loc_{p} using these coordinates.
3. Find functions f on $\Pi_{\mathbb{Q}_{p}}^{\mathrm{dR}}$ which vanish on the image of loc_{p}.
4. The pullbacks $f \circ j_{p}$ are Coleman functions vanishing on $X\left(\mathbb{Z}_{p}\right)_{S, \infty}$.
5. The motivic Selmer scheme

Algebraic geometry in a Tannakian category

Let k be a field and $\mathcal{T}=(\mathcal{T}, \otimes, 1)$ a k-linear Tannakian category.
A ring in \mathcal{T} is an ind-object A of \mathcal{T} with a unit $1 \rightarrow A$ and multiplication map $A \otimes A \rightarrow A$ satisfying unit, associativity and commutativity axioms.
An affine scheme in \mathcal{T} is $\operatorname{Spec}(A)$ for a ring A in \mathcal{T}.
Similar definitions for affine group schemes and torsors in \mathcal{T}.

Example

If \mathcal{T} is the category of linear representations of a pro-algebraic group G / k, an affine scheme in \mathcal{T} is an affine k-scheme X with a G-action.

Mixed Tate motives

Let $\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$ be the category of mixed Tate motives over \mathbb{Z}_{S} with \mathbb{Q}-coefficients, as constructed by Deligne-Goncharov. ${ }^{5}$

- $\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$ is a \mathbb{Q}-linear Tannakian category.
- distinguished object: $\mathbb{Q}(1)$
- simple objects: Tate objects $\mathbb{Q}(n):=\mathbb{Q}(1)^{\otimes n}$ for $n \in \mathbb{Z}$
- $\operatorname{Ext}_{\mathrm{MT}\left(\mathbb{Z}_{s}, \mathbb{Q}\right)}^{1}(\mathbb{Q}(0), \mathbb{Q}(n))=0$ for $n \leq 0$

There are realisation functors

$$
\begin{aligned}
\text { realét }, p: \operatorname{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right) & \rightarrow \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{\mathbb{Q}}\right), \\
\operatorname{real}_{\mathrm{dR}}: \mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right) & \rightarrow \mathbb{Q} \text { - } \operatorname{Vect}_{f}, \\
\text { real }_{\text {cris }, p}: M T\left(\mathbb{Z}_{S}, \mathbb{Q}\right) & \rightarrow \mathrm{MF}_{\mathbb{Q}_{p}}^{\varphi, \text { adm }} \quad(p \notin S) .
\end{aligned}
$$

${ }^{5}$ Groupes fondamentaux motiviques de Tate mixte, 2005

Motivic fundamental group

Let $b=\overrightarrow{1}_{0}$ be the tangential base point of $X=\mathbb{P}_{\mathbb{Z}_{s}}^{1} \backslash\{0,1, \infty\}$ based at 0 .

The unipotent motivic fundamental group of X is a pro-unipotent group

$$
\pi_{1}^{\mathrm{mot}}(X, b)
$$

in $\operatorname{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$.
Its realisations are the p-adic étale / de Rham / crystalline fundamental group:

$$
\begin{aligned}
& \operatorname{real}_{\text {ét }, p}\left(\pi_{1}^{\mathrm{mot}}(X, b)\right)=\pi_{1}^{\mathrm{e} t}, \mathbb{Q}_{p} \\
& \operatorname{real}_{\mathrm{dR}}\left(X_{\overline{\mathbb{Q}}}, b\right) \\
& \operatorname{real}_{\text {cris }, p}\left(\pi_{1}^{\mathrm{mot}}(X, b)\right)=\pi_{1}^{\mathrm{dR}}(X, b) \\
&=\pi_{1}^{\mathrm{cris}}\left(X_{\mathbb{F}_{p}}, b\right)
\end{aligned}
$$

The motivic Selmer scheme as a moduli space

Let

$$
\pi_{1}^{m o t}(X, b) \rightarrow \Pi
$$

be a quotient of the motivic fundamental group in $\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$.
The motivic Selmer scheme is defined as the moduli space of Π-torsors in $\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$:

Definition/Theorem

The motivic Selmer scheme $\operatorname{Sel}_{S, \Pi}^{m o t}(X)$ is the \mathbb{Q}-scheme representing the functor on \mathbb{Q}-algebras

$$
R \mapsto\left\{\Pi \text {-torsors over } R \text { in } \mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)\right\} / \text { iso. }
$$

The motivic Kummer map

For $x \in X\left(\mathbb{Z}_{S}\right)$, we have the motivic path space $\pi_{1}^{\text {mot }}(X ; b, x)$ which is a $\pi_{1}^{\text {mot }}(X, b)$-torsor in $\operatorname{MT}\left(\mathbb{Z}_{s}, \mathbb{Q}\right)$. Let

$$
\pi_{1}^{\mathrm{mot}}(X ; b, x) \rightarrow{ }_{x} \Pi_{b}
$$

be the pushout along $\pi_{1}^{\text {mot }}(X, b) \rightarrow \Pi$. This defines the motivic Kummer map

$$
\begin{aligned}
j_{S}: X\left(\mathbb{Z}_{S}\right) & \rightarrow \operatorname{Sel}_{S, \Pi}^{\operatorname{mot}}(X)(\mathbb{Q}), \\
x & \mapsto\left[x \Pi_{b}\right]
\end{aligned}
$$

Algebraic group cohomology

Let k be a field, G / k a pro-algebraic group acting on a pro-unipotent group Π / k.

Definition

Let R be a k-algebra. An algebraic cocycle $c: G_{R} \rightarrow \Pi_{R}$ is a morphism of R-schemes satisfying the cocycle condition

$$
c(g h)=c(g) \cdot g(c(h))
$$

for all $g, h \in G_{R}$. Two cocycles c_{1}, c_{2} are cohomologous if there exists $\gamma \in \Pi(R)$ such that

$$
c_{2}(g)=\gamma^{-1} \cdot c_{1}(g) \cdot g(c(\gamma))
$$

for all $g \in G_{R}$.

Algebraic group cohomology

Let

$$
\mathrm{H}^{1}\left(G_{R}, \Pi_{R}\right):=\mathrm{Z}^{1}\left(G_{R}, \Pi_{R}\right) / \Pi(R)
$$

be the pointed set of cohomology classes of algebraic cocycles. Write

$$
\mathrm{H}^{1}(G, \Pi)
$$

for the associated functor on R-algebras, $R \mapsto \mathrm{H}^{1}\left(G_{R}, \Pi_{R}\right)$.

Parametrising torsors in Tannakian categories

Let $\mathcal{T}=(\mathcal{T}, \otimes, 1)$ a k-linear Tannakian category and Π a pro-unipotent group in \mathcal{T}. Let $\omega: \mathcal{T} \rightarrow k$-Vect $_{f}$ be a fibre functor and $\pi_{1}(\mathcal{T}, \omega):=\operatorname{Aut}^{\otimes}(\omega)$ the associated Tannaka group.

Proposition

There is a canonical isomorphism of functors of pointed sets on k-algebras

$$
\{\Pi \text {-torsors in } \mathcal{T}\} / \text { iso } \cong \mathrm{H}^{1}\left(\pi_{1}(\mathcal{T}, \omega), \omega(\Pi)\right)
$$

Proof.

Let P be a Π-torsor over R in \mathcal{T}.

- $\omega(P)$ is a $\pi_{1}(\mathcal{T}, \omega)$-equivariant $\omega(\Pi)$-torsor over R.
- Π pro-unipotent $\Rightarrow \exists p \in \omega(P)(R)$
- $c_{P}: \pi_{1}(\mathcal{T}, \omega)_{R} \rightarrow \omega(\Pi)_{R}, g \mapsto p^{-1} \cdot g(p)$ is algebraic cocycle
- $P \mapsto\left[c_{P}\right]$ is well-defined bijection

Motivic Selmer scheme via algebraic group cohomology

Let

$$
G_{S}:=\pi_{1}\left(\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right), \text { real }_{\mathrm{dR}}\right)
$$

be the Tannaka group of $\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$ with respect to the de Rham fibre functor. It is called the mixed Tate motivic Galois group of \mathbb{Z}_{s}.

Let $\pi_{1}^{\text {mot }}(X, b) \rightarrow \Pi$ be a quotient in $\operatorname{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$.
Its de Rham realisation is a G_{S}-equivariant quotient

$$
\pi_{1}^{\mathrm{dR}}(X, b) \rightarrow \Pi^{\mathrm{dR}}
$$

Corollary

The motivic Selmer scheme is isomorphic to the algebraic group cohomology

$$
\operatorname{Sel}_{S, \Pi}^{\mathrm{mot}}(X) \cong \mathrm{H}^{1}\left(G_{S}, \Pi^{\mathrm{dR}}\right)
$$

The mixed Tate motivic Galois group

The action of G_{S} on $\mathbb{Q}(-1)$ defines a surjective homomorphism $G_{S} \rightarrow \mathbb{G}_{m}$. The kernel is a pro-unipotent group U_{S} :

$$
\begin{equation*}
1 \rightarrow U_{S} \rightarrow G_{S} \rightarrow \mathbb{G}_{m} \rightarrow 1 \tag{*}
\end{equation*}
$$

Objects M of $M T\left(\mathbb{Z}_{s}, \mathbb{Q}\right)$ carry a natural weight filtration $W_{\bullet} M$ indexed by even integers s.t. $\operatorname{gr}_{2 n}^{W} M$ is a direct sum of copies of $\mathbb{Q}(-n)$.

The splitting of the weight filtration on $\operatorname{real}_{\mathrm{dR}}(M)$ defines a splitting of $(*)$, so G_{S} is a semi-direct product

$$
G_{S}=U_{S} \rtimes \mathbb{G}_{m}
$$

\mathbb{G}_{m}-invariant points of Π-torsors

Lemma

Let P be a G_{S}-equivariant Π^{dR}-torsor over a \mathbb{Q}-algebra R. Then $P(R)$ contains a unique \mathbb{G}_{m}-invariant point.

Proof.

$R=\mathbb{Q}$ for simplicity.

- Uniqueness: equivalent to $\Pi^{\mathrm{dR}}(\mathbb{Q})^{\mathbb{G}_{m}}=\{1\}$. Follows from $\operatorname{Lie}\left(\pi_{1}^{\mathrm{dR}}(X, b)\right)$ being graded in strictly negative weights.
- Existence: equivalent to $\mathrm{H}^{1}\left(\mathbb{G}_{m}, \Pi^{\mathrm{dR}}\right)=\{*\}$. In general, $H^{1}(G, U)=\{*\}$ for G reductive, U pro-unipotent. Proof for $U=V$ vector group: $\mathrm{H}^{1}(G, V)$ classifies extensions of G-representations

$$
0 \rightarrow V \rightarrow E \rightarrow \mathbb{Q} \rightarrow 0
$$

G reductive \Rightarrow every extension splits

Motivic Selmer scheme via \mathbb{G}_{m}-equivariant cocycles

Let P be a G_{S}-equivariant Π^{dR}-torsor over a \mathbb{Q}-algebra R.
Let p^{dR} be the unique \mathbb{G}_{m}-invariant point in $P(R)$.
It defines a canonical cocycle

$$
c_{P}^{\text {can }}:\left(G_{S}\right)_{R} \rightarrow \Pi_{R}^{\mathrm{dR}}, \quad g \mapsto\left(p^{\mathrm{dR}}\right)^{-1} \cdot g\left(p^{\mathrm{dR}}\right)
$$

Its restriction to U_{S} is \mathbb{G}_{m}-equivariant.

Proposition

The construction $P \mapsto c_{P}^{\text {can }} \mid U_{s}$ defines an isomorphism

$$
H^{1}\left(G_{S}, \Pi^{\mathrm{dR}}\right) \cong Z^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right)^{\mathbb{G}_{m}}
$$

Here, $Z^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right)^{\mathbb{G}_{m}}$ denotes the \mathbb{G}_{m}-equivariant cocycles $U_{S} \rightarrow \Pi^{\mathrm{dR}}$ (as a functor on \mathbb{Q}-algebras).

Nonabelian Lie algebra cocycles

Let \mathfrak{u} and \mathfrak{p} be Lie algebras over a field k.
Assume \mathfrak{u} acts on \mathfrak{p} by derivations via

$$
\phi: \mathfrak{u} \rightarrow \operatorname{Der}(\mathfrak{p}), \quad X \mapsto \phi_{X} .
$$

Definition

A 1-cocycle $C: \mathfrak{u} \rightarrow \mathfrak{p}$ is a linear map satisfying

$$
C\left[X_{1}, X_{2}\right]=\left[C X_{1}, C X_{2}\right]+\phi_{X_{1}}\left(C X_{2}\right)-\phi_{X_{2}}\left(C X_{1}\right) \quad \text { for } X_{1}, X_{2} \in \mathfrak{u}
$$

The vector space of cocycles is denoted by

$$
Z^{1}(\mathfrak{u}, \mathfrak{p})
$$

Nonabelian Lie algebra cocycles

Assume U and Π are algebraic groups with U acting on Π. Then $\mathfrak{u}:=\operatorname{Lie}(U)$ acts on $\mathfrak{p}:=\operatorname{Lie}(\Pi)$ by derivations.
If $c: U \rightarrow \Pi$ is an algebraic group cocycle, the derivative at the identity is a Lie algebra cocycle. This defines a map

$$
Z^{1}(U, \Pi) \rightarrow Z^{1}(\mathfrak{u}, \mathfrak{p})
$$

Lemma

If U and Π are unipotent, this is an isomorphism.

Proof.

$Z^{1}(U, \Pi) \xrightarrow{\cong}$ \{homomorphic sections of $\left.\Pi \rtimes U \rightarrow U\right\}$ $\downarrow \downarrow \cong$
$\mathrm{Z}^{1}(\mathfrak{u}, \mathfrak{p}) \xrightarrow{\cong}$ \{homomorphic sections of $\left.\mathfrak{p} \rtimes \mathfrak{u} \rightarrow \mathfrak{u}\right\} \quad \square$

Motivic Selmer scheme via Lie algebra cocycles

Let $\pi_{1}^{\text {mot }}(X, b) \rightarrow \Pi$ be a quotient in $\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)$.
We have isomorphisms

$$
\begin{aligned}
\operatorname{Sel}_{S, \Pi}^{m o t}(X) & \cong \mathrm{H}^{1}\left(G_{S}, \Pi^{\mathrm{dR}}\right) \\
& \cong \mathrm{Z}^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right)^{\mathbb{G}_{m}} \\
& \cong Z^{1}\left(\operatorname{Lie}\left(U_{S}\right), \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)\right)^{\mathbb{G}_{m}} .
\end{aligned}
$$

In other words, points of the motivic Selmer scheme are in bijection with graded cocycles of Lie algebras $\operatorname{Lie}\left(U_{S}\right) \rightarrow \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$.

Structure of $\operatorname{Lie}\left(U_{S}\right)$

Proposition

$\operatorname{Lie}\left(U_{S}\right)$ is a free graded pro-nilpotent Lie algebra on generators

$$
\Sigma=\left\{\tau_{\ell}: \ell \in S\right\} \cup\left\{\sigma_{3}, \sigma_{5}, \sigma_{7}, \ldots\right\}
$$

with half-weights $\operatorname{deg}\left(\tau_{\ell}\right)=-1, \operatorname{deg}\left(\sigma_{2 i+1}\right)=-(2 i+1)$.

Proof.

Generators from
$\operatorname{Ext}_{\mathrm{MT}\left(\mathbb{Z}_{S}, \mathbb{Q}\right)}^{1}(\mathbb{Q}(0), \mathbb{Q}(n)) \cong K_{2 n-1}\left(\mathbb{Z}_{S}\right)_{\mathbb{Q}}= \begin{cases}\mathbb{Z}_{S}^{\times} \otimes \mathbb{Q}, & n=1, \\ \operatorname{dim} 1, & n \geq 3 \text { odd }, \\ 0, & o / w,\end{cases}$
relations from $\operatorname{Ext}_{M T\left(\mathbb{Z}_{s}, \mathbb{Q}\right)}^{2}(\mathbb{Q}(0), \mathbb{Q}(n))=0$.

Motivic Selmer scheme as an affine space

Let $\Sigma=\coprod_{n<0} \Sigma_{n}=\left\{\tau_{\ell}: \ell \in S\right\} \cup\left\{\sigma_{3}, \sigma_{5}, \ldots\right\}$ be a choice of free generators of $\operatorname{Lie}\left(U_{S}\right)$ with Σ_{n} in degree n.
Let $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)=\prod_{n<0} \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{n}$ be the grading by half-weight.

Proposition

We have an isomorphism

$$
\left.\operatorname{Se}\right|_{S, \Pi} ^{\operatorname{mot}}(X) \cong \prod_{n<0} \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{n}^{\sum_{n}}
$$

Proof.

We showed $\operatorname{Sel}_{S, \Pi}^{m o t}(X)=Z^{1}\left(\operatorname{Lie}\left(U_{S}\right), \operatorname{Lie}(\Pi)^{\mathrm{dR}}\right)^{\mathbb{G}_{m}}$.
Cocycles $C: \operatorname{Lie}\left(U_{S}\right) \rightarrow \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$ are uniquely determined by the images of free generators. Graded cocycles map Σ_{n} into $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{n}$.

Motivic Selmer scheme as an affine space

Corollary

If Π is finite-dimensional, then $\operatorname{Sel}_{S, \Pi}^{m o t}(X)$ is an affine space over \mathbb{Q} of dimension

$$
\# S \cdot \operatorname{dim} \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{-1}+\sum_{i \geq 1} \operatorname{dim} \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{-(2 i+1)}
$$

Proof.

$$
\operatorname{Sel}_{S, \Pi}^{\mathrm{mot}}(X) \cong \prod_{n<0} \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{n}^{\sum_{n}}
$$

Free generators of $\operatorname{Lie}\left(U_{S}\right)$ are

$$
\begin{aligned}
\Sigma_{-1} & =\left\{\tau_{\ell}: \ell \in S\right\} \\
\Sigma_{-(2 i+1)} & =\left\{\sigma_{2 i+1}\right\} \\
\Sigma_{n} & =\emptyset \quad \text { otherwise. }
\end{aligned}
$$

3. Coordinates on the Selmer scheme

The cocommutative Hopf algebra of $\pi_{1}^{\mathrm{dR}}(X, b)$

Assume $\Pi=\pi_{1}^{\text {mot }}(X, b)$ is the full fundamental group.
Then $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$ is a free pro-nilpotent Lie algebra on two generators e_{0} and e_{1} in degree -1 .

Let

$$
\mathcal{H}\left(\Pi^{\mathrm{dR}}\right):=\mathcal{O}\left(\Pi^{\mathrm{dR}}\right)^{\vee} \cong \mathcal{U}\left(\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)\right)
$$

be the co-commutative Hopf algebra associated to Π^{dR}. Then

$$
\mathcal{H}\left(\Pi^{\mathrm{dR}}\right)=\mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle
$$

is a non-commutative power series algebra on e_{0}, e_{1}. Elements are $\sum_{w} a_{w} \cdot w, a_{w} \in \mathbb{Q}$, with w running through words in e_{0}, e_{1}.

Lie-like elements

$$
\mathcal{H}\left(\Pi^{\mathrm{dR}}\right)=\mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle
$$

counit: $\varepsilon\left(\sum_{w} a_{w} w\right)=a \emptyset$ coproduct: $\Delta e_{i}=e_{i} \otimes 1+1 \otimes e_{i}$

Definition

An element $A \in \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ is Lie-like (or primitive) if

$$
\varepsilon(A)=0 \quad \text { and } \quad \Delta(A)=A \otimes 1+1 \otimes A .
$$

Remark

$\sum a_{w} w$ is Lie-like iff $a_{\emptyset}=0$ and for all non-empty w_{1}, w_{2}, we have

$$
\sum_{\sigma \in \operatorname{Sh}\left(\left|w_{1}\right|,\left|w_{2}\right|\right)} a_{\sigma\left(w_{1} w_{2}\right)}=0,
$$

where $\operatorname{Sh}(m, n) \subseteq S_{m+n}$ denotes the shuffle permutations.

Coefficient extraction functionals

The Lie algebra $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$ embeds into $\mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ as the Lie-like elements with the Lie bracket $[A, B]=A B-B A$.

Given a word w in e_{0}, e_{1}, let

$$
f_{w}: \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \rightarrow \mathbb{Q}
$$

be the coefficient extraction functional $\sum_{w^{\prime}} a_{w^{\prime}} w^{\prime} \mapsto a_{w}$. If w has degree n, the restriction of f_{w} to $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$ defines an element of $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{n}^{\mathrm{V}}$.

Lyndon basis

Definition

A word in the symbols e_{0}, e_{1} is a Lyndon word if it is non-empty and lexicographically smaller (with respect to the ordering $e_{0}<e_{1}$) than its cyclic rotations.

Examples:
$e_{0}, \quad e_{1}, \quad e_{0} e_{1}, \quad e_{0} e_{0} e_{1}, \quad e_{0} e_{1} e_{1}, \quad e_{0} e_{0} e_{0} e_{1}, \quad e_{0} e_{0} e_{1} e_{1}, \quad e_{0} e_{1} e_{1} e_{1}$.

Proposition

The coefficient extraction functionals f_{w} with w running through the Lyndon words of degree n form a basis of $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{n}^{\vee}$.

Coordinates on the Selmer scheme

Let $\Sigma=\left\{\tau_{\ell}: \ell \in S\right\} \cup\left\{\sigma_{3}, \sigma_{5}, \ldots\right\}$ be free generators of $\operatorname{Lie}\left(U_{S}\right)$.
For a graded cocycle $c: \operatorname{Lie}\left(U_{S}\right) \rightarrow \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$ define

$$
\begin{aligned}
& x_{\ell}(c):=f_{e_{0}}\left(c\left(\tau_{\ell}\right)\right), \\
& y_{\ell}(c):=f_{e_{1}}\left(c\left(\tau_{\ell}\right)\right),
\end{aligned}
$$

for $\ell \in S$, and

$$
z_{w}(c):=f_{w}\left(c\left(\sigma_{2 i+1}\right)\right)
$$

for $i \geq 1$ and Lyndon words of length $2 i+1$.

Theorem

$\operatorname{Sel}_{S, \Pi}^{m o t}(X)$ is an affine space with coordinates $x_{\ell}, y_{\ell}, z_{w}$ as above.

Proof.

Graded cocycles are uniquely determined by $c\left(\tau_{\ell}\right) \in \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{-1}$ and $c\left(\sigma_{2 i+1}\right) \in \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)_{-(2 i+1)}$.

Coordinates on the polylogarithmic Selmer scheme

Have similar results for quotients of $\pi_{1}^{\mathrm{mot}}(X, b)$.

Example

$\Pi_{\mathrm{PL}}=$ polylogarithmic quotient.
$\operatorname{Lie}\left(\Pi_{\mathrm{PL}}^{\mathrm{dR}}\right)_{-1}^{\vee}$ has basis $\left\{f_{e_{0}}, f_{e_{1}}\right\}$.
$\operatorname{Lie}\left(\Pi_{\mathrm{PL}}^{\mathrm{dR}}\right)_{-(2 i+1)}^{\vee}$ has basis $\left\{f_{e_{0}^{2 i} e_{1}}\right\}$.

$$
\operatorname{Sel}_{S, \mathrm{PL}}^{\mathrm{mot}_{0}}(X)=\operatorname{Spec} \mathbb{Q}\left[\left(x_{\ell}\right)_{\ell \in S},\left(y_{\ell}\right)_{\ell \in S}, z_{3}, z_{5}, \ldots\right],
$$

where $z_{2 i+1}(c):=z_{e_{0}^{2 i} e_{1}}(c)=f_{e_{0}^{2 i} e_{1}}\left(c\left(\sigma_{2 i+1}\right)\right)$.

Coordinates on the 4-step nilpotent Selmer scheme

Example

$\Pi_{4}=4$-step nilpotent quotient.
$\operatorname{Lie}\left(\Pi_{4}^{\mathrm{dR}}\right)_{-3}^{\vee}$ has basis $\left\{f_{e_{0} e_{0} e_{1}}, f_{e_{0} e_{1} e_{1}}\right\}$ corresponding to the two Lyndon words of length 3.

$$
\operatorname{Sel}_{S, 4}^{\operatorname{mot}}(X)=\operatorname{Spec} \mathbb{Q}\left[\left(x_{\ell}\right)_{\ell \in S},\left(y_{\ell}\right)_{\ell \in S}, z_{3}, z_{2,1}\right]
$$

where

$$
\begin{aligned}
z_{3}(c) & :=z_{e_{0} e_{0} e_{1}}(c)=f_{e_{0} e_{0} e_{1}}\left(c\left(\sigma_{3}\right)\right), \\
z_{2,1}(c) & :=z_{e_{0} e_{1} e_{1}}(c)=f_{e_{0} e_{1} e_{1}}\left(c\left(\sigma_{3}\right)\right)
\end{aligned}
$$

4. Chabauty-Kim calculations

Localisation map

Motivic Chabauty-Kim diagram:

$$
\begin{array}{cc}
X\left(\mathbb{Z}_{S}\right) & \\
\downarrow^{j_{S}} & \\
Z^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right)^{\mathbb{G}_{m}}(\mathbb{Q}) \\
\left.\mathbb{Z}_{p}\right) \\
\dot{\text { loc }}_{p} \\
\eta^{\mathrm{dR}}\left(\mathbb{Q}_{p}\right)
\end{array}
$$

The localisation map is given by evaluating cocycles at Chatzistamatiou-Ünver's p-adic period point $\eta_{p} \in U_{S}\left(\mathbb{Q}_{p}\right)$:

$$
\operatorname{loc}_{p}(c)=c\left(\eta_{p}\right)
$$

Remark: We show in $[B K L 23]^{6}$ that this motivic Chabauty-Kim diagram is isomorphic to the classical one defined via Galois cohomology of the \mathbb{Q}_{p}-prounipotent étale fundamental group.
${ }^{6}$ Chabauty-Kim and the Section Conjecture for locally geometric sections

Grouplike elements

Let

$$
\mathcal{H}\left(U_{S}\right):=\mathcal{O}\left(U_{S}\right)^{\vee} \cong \mathcal{U}\left(\operatorname{Lie}\left(U_{S}\right)\right)
$$

be the co-commutative Hopf algebra of U_{S}.
Let $\Sigma=\left\{\tau_{\ell}: \ell \in S\right\} \cup\left\{\sigma_{3}, \sigma_{5}, \ldots\right\}$ be free generators of $\operatorname{Lie}\left(U_{S}\right)$. Then

$$
\mathcal{H}\left(U_{S}\right)=\mathbb{Q}\langle\langle\Sigma\rangle\rangle
$$

is the non-commutative power series algebra on Σ.

Definition

Let R be a \mathbb{Q}-algebra. An element $g \in R\langle\langle\Sigma\rangle\rangle$ is grouplike if

$$
\varepsilon(g)=1 \quad \text { and } \quad \Delta(g)=g \otimes g
$$

Remark

$g=\sum a_{u} u$ is grouplike iff $a_{\emptyset}=1$ and for all u_{1}, u_{2} we have the shuffle relation $a_{u_{1}} a_{u_{2}}=\sum_{\sigma \in \operatorname{Sh}\left(\left|u_{1}\right|,\left|u_{2}\right|\right)} a_{\sigma\left(u_{1} u_{2}\right)}$.

Hopf algebra cocycles

$U_{S}(R)$ embeds into $R\langle\langle\Sigma\rangle\rangle^{\times}$as the grouplike elements.
The group action of U_{S} on Π^{dR} extends to a Hopf algebra action of $\mathcal{H}\left(U_{S}\right)=\mathbb{Q}\langle\langle\Sigma\rangle\rangle$ on $\mathcal{H}\left(\Pi^{\mathrm{dR}}\right)=\mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$.
Any group cocycle $c: U_{S} \rightarrow \Pi^{\mathrm{dR}}$ extends to a Hopf algebra cocycle

$$
c: \mathbb{Q}\langle\langle\Sigma\rangle\rangle \rightarrow \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle .
$$

Cocycle condition (using Sweedler's notation):

$$
c(X Y)=\sum_{(X)} c\left(X_{(1)}\right) \cdot X_{(2)} \cdot c(Y)
$$

In particular, if X is Lie-like:

$$
c(X Y)=c(X) c(Y)+X . c(Y)
$$

Three kinds of cocycles

Cocycles between algebraic groups, their Lie algebras and their Hopf algebras are equivalent:

$$
Z^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right) \cong \mathrm{Z}^{1}\left(\operatorname{Lie}\left(U_{S}\right), \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)\right) \cong \mathrm{Z}^{1}\left(\mathcal{H}\left(U_{S}\right), \mathcal{H}\left(\Pi^{\mathrm{dR}}\right)\right)
$$

For explicit calculations, working with the Hopf algebras $\mathcal{H}\left(U_{S}\right)=\mathbb{Q}\langle\langle\Sigma\rangle\rangle$ and $\mathcal{H}\left(\Pi^{\mathrm{dR}}\right)=\mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ is most convenient.

Calculating the localisation map

We want to calculate the cocycle evaluation map

$$
\begin{gathered}
\mathrm{loc}_{p}: Z^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right)_{\mathbb{Q}_{p}}^{\mathbb{G}_{m}} \rightarrow \Pi_{\mathbb{Q}_{p}}^{\mathrm{dR}}, \\
c \mapsto c\left(\eta_{p}\right) .
\end{gathered}
$$

Write the period point $\eta_{p} \in U_{S}\left(\mathbb{Q}_{p}\right)$ as a grouplike power series:

$$
\eta_{p}=\sum_{u} a_{u} u \in \mathbb{Q}_{p}\langle\langle\Sigma\rangle\rangle .
$$

Functions on Π^{dR} are $\mathrm{Li}_{w}:=f_{w}$ for words w in e_{0}, e_{1}.
Let $c: \mathbb{Q}_{p}\left\langle\langle\Sigma\rangle \rightarrow \mathbb{Q}_{p}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle\right.$ be a graded Hopf algebra cocycle.

$$
\left(\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{w}\right)(c)=f_{w}\left(c\left(\eta_{p}\right)\right)=\sum_{u} a_{u} f_{w}(c(u))
$$

Localisation map in depth 1

$$
\left(\operatorname{loc}_{p}^{\sharp} L i_{w}\right)(c)=\sum_{u} a_{u} f_{w}(c(u))
$$

Since c is graded, we can restrict the sum to those u of the same degree as w.

Example: Words over Σ of degree -1 are τ_{ℓ} for $\ell \in S$.

$$
\begin{aligned}
& \left(\operatorname{loc}_{p}^{\sharp} \log \right)(c)=\left(\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{e_{0}}\right)(c)=\sum_{\ell \in S} a_{\tau_{\ell}} f_{e_{0}}\left(c\left(\tau_{\ell}\right)\right)=\sum_{\ell \in S} a_{\tau_{\ell}} x_{\ell}(c), \\
& \left(\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{1}\right)(c)=\left(\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{e_{1}}\right)(c)=\sum_{\ell \in S} a_{\tau_{\ell}} f_{e_{1}}\left(c\left(\tau_{\ell}\right)\right)=\sum_{\ell \in S} a_{\tau_{\ell}} y_{\ell}(c) .
\end{aligned}
$$

Localisation map in depth 2

Words over Σ of degree -2 are $\tau_{\ell} \tau_{q}$ with $\ell, q \in S$.
To evaluate $c\left(\tau_{\ell} \tau_{q}\right)$ use:

- cocycle property: $c\left(\tau_{\ell} \tau_{q}\right)=c\left(\tau_{\ell}\right) c\left(\tau_{q}\right)+\tau_{\ell \cdot c} c\left(\tau_{q}\right)$
- τ_{ℓ} acts trivially on $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$, so $\tau_{\ell} \cdot c\left(\tau_{q}\right)=0$

$$
\Rightarrow c\left(\tau_{\ell} \tau_{q}\right)=c\left(\tau_{\ell}\right) c\left(\tau_{q}\right)
$$

$$
\begin{aligned}
\Rightarrow\left(\operatorname{loc}_{p}^{\sharp} \mathrm{Li} i_{2}\right)(c) & =\left(\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{e_{0} e_{1}}\right)(c)=\sum_{\ell, q \in S} a_{\tau_{\ell} \tau_{q}} f_{e_{0} e_{1}}\left(c\left(\tau_{\ell} \tau_{q}\right)\right) \\
& =\sum_{\ell, q \in S} a_{\tau_{\ell} \tau_{q}} f_{e_{0} e_{1}}\left(c\left(\tau_{\ell}\right) c\left(\tau_{q}\right)\right) \\
& =\sum_{\ell, q \in S} a_{\tau_{\ell} \tau_{q}} f_{e_{0}}\left(c\left(\tau_{\ell}\right)\right) f_{e_{1}}\left(c\left(\tau_{q}\right)\right) \\
& =\sum_{\ell, q \in S} a_{\tau_{\ell} \tau_{q}} x_{\ell}(c) y_{q}(c)
\end{aligned}
$$

Localisation map in depth 2

We recover the localisation map for the 2-step nilpotent quotient Π_{2} as previously derived by Dan-Cohen and Wewers:

$$
\begin{aligned}
& \operatorname{loc}_{p}: \operatorname{Spec} \mathbb{Q}_{p}\left[\left(x_{\ell}\right)_{\ell \in S},(y \ell)_{\ell \in S}\right] \rightarrow \operatorname{Spec} \mathbb{Q}_{p}\left[\log , \mathrm{Li}_{1}, \mathrm{Li}_{2}\right] \\
& \operatorname{loc}_{p}^{\sharp} \log =\sum_{\ell \in S} a_{\tau_{\ell}} x_{\ell}, \\
& \operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{1}=\sum_{\ell \in S} a_{\tau_{\ell}} y_{\ell}, \\
& \operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{2}=\sum_{\ell, q \in S} a_{\tau_{\ell} \tau_{q}} x_{\ell} y_{q} .
\end{aligned}
$$

In higher depth we have to evaluate things like

$$
c\left(\sigma_{3} \tau_{\ell}\right)=c\left(\sigma_{3}\right) c\left(\tau_{\ell}\right)+\sigma_{3} \cdot c\left(\tau_{\ell}\right)
$$

so we need to understand the motivic Galois action.

The motivic Galois action

Let

$$
\kappa_{1}: \operatorname{Lie}\left(U_{S}\right) \rightarrow \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)
$$

be the cocycle representing the path torsor $\pi_{1}^{\text {mot }}\left(X ; \overrightarrow{1}_{0},-\overrightarrow{1}_{1}\right)$. It is given by

$$
\kappa_{1}(\sigma)=\left(p^{\mathrm{dR}}\right)^{-1} \sigma\left(p^{\mathrm{dR}}\right)
$$

where p^{dR} is the unique \mathbb{G}_{m}-invariant path from $\overrightarrow{1}_{0}$ to $-\overrightarrow{1}_{1}$.

Theorem

The action of $\mathrm{Lie}\left(U_{S}\right)$ on $\mathrm{Lie}\left(\Pi^{\mathrm{dR}}\right)$ satisfies and is completely determined by the following:

1. the τ_{ℓ} act trivially;
2. $\sigma . e_{0}=0$ for all $\sigma \in \operatorname{Lie}\left(U_{S}\right)$;
3. $\sigma . e_{1}=\left[e_{1}, \kappa_{1}(\sigma)\right]$ for all $\sigma \in \operatorname{Lie}\left(U_{S}\right)$.

Motivic multiple zeta values

For a tuple $\left(k_{1}, \ldots, k_{r}\right)$ define the motivic multiple zeta value

$$
\zeta^{\mathfrak{u}}\left(k_{1}, \ldots, k_{r}\right) \in \mathcal{O}\left(U_{S}\right)
$$

as the function on U_{S} given by

$$
u \mapsto \int_{u\left(p^{\mathrm{dR}}\right)} \underbrace{\frac{\mathrm{d} z}{z} \cdots \frac{\mathrm{~d} z}{z} \frac{\mathrm{~d} z}{1-z}}_{k_{1}} \cdots \underbrace{\frac{\mathrm{~d} z}{z} \cdots \frac{\mathrm{~d} z}{z} \frac{\mathrm{~d} z}{1-z}}_{k_{r}} .
$$

Alternative notation: $\zeta^{\mathfrak{u}}\left(e_{0}^{k_{1}-1} e_{1} \cdots e_{0}^{k_{r}-1} e_{1}\right)$.
With respect to the pairing

$$
\langle\cdot, \cdot\rangle: \mathcal{O}\left(U_{S}\right) \otimes \mathcal{H}\left(U_{S}\right) \rightarrow \mathbb{Q}
$$

we have for $\sigma \in \operatorname{Lie}\left(U_{S}\right)$ and words w in e_{0}, e_{1} :

$$
f_{w}\left(\kappa_{1}(\sigma)\right)=\left\langle\zeta^{\mathfrak{u}}(w), \sigma\right\rangle
$$

A nontrivial calculation

In order to calculate $f_{e_{0} e_{1} e_{1} e_{1}}\left(\sigma_{3} . C\left(\tau_{\ell}\right)\right)$, combine:

- $c\left(\tau_{\ell}\right)=x_{\ell}(c) e_{0}+y_{\ell}(c) e_{1}$
- σ_{3} acts trivially on e_{0}
- $\sigma_{3} \cdot e_{1}=\left[e_{1}, \kappa_{1}\left(\sigma_{3}\right)\right]$
- $f_{w}\left(\kappa_{1}\left(\sigma_{3}\right)\right)=\left\langle\zeta^{\mathfrak{u}}(w), \sigma_{3}\right\rangle$
- identity of motivic MZV: $\zeta^{\mathfrak{u}}(2,1)=\zeta^{\mathfrak{u}}(3)$
- $\left\langle\zeta^{\mathfrak{u}}(3), \sigma_{3}\right\rangle=1$ (for suitable choice of σ_{3})
to obtain

$$
f_{e_{0} e_{1} e_{1} e_{1}}\left(\sigma_{3} \cdot c\left(\tau_{\ell}\right)\right)=-y_{\ell}(c) .
$$

Localisation map in depth 4

$\operatorname{loc}_{p}: \operatorname{Spec} \mathbb{Q}_{p}\left[\left(x_{\ell}\right)_{\ell \in S}\left(y_{\ell}\right)_{\ell \in S}, z_{3}, z_{2,1}\right] \rightarrow \operatorname{Spec} \mathbb{Q}_{p}\left[\log , \mathrm{Li}_{1}, \mathrm{Li}_{2}, \mathrm{Li}_{3}, \mathrm{Li}_{2,1}, \mathrm{Li}_{4}, \mathrm{Li}_{3,1}, \mathrm{Li}_{2,1,1}\right]$ is given by

$$
\begin{aligned}
& \operatorname{loc}{ }_{p}^{\#} \log =\sum_{\ell \in S} a_{\tau_{\ell}} x_{\ell}, \\
& \operatorname{loc}_{p}^{\#} \mathrm{Li}_{1}=\sum_{\ell \in S} \mathrm{a}_{\tau_{\ell}} y_{\ell}, \\
& \operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{2}=\sum_{\ell, q \in S} a_{\tau_{\ell}} \tau_{q} x_{\ell} y_{q}, \\
& \operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{3}=\sum_{\ell_{\mathbf{1}}, \ell_{\mathbf{2}}, q \in S} a_{\tau_{\ell_{\mathbf{1}}}} \tau_{\ell_{\mathbf{2}}} \tau_{q} x_{\ell_{\mathbf{1}}} x_{\ell_{\mathbf{2}}} y_{q}+a_{\sigma_{\mathbf{3}}} z_{3}, \\
& \operatorname{loc}_{p}^{\#} \mathrm{Li}_{2,1}=\sum_{\ell, q_{\mathbf{1}}, q_{\mathbf{2}} \in S} a_{\tau_{\ell} \tau_{q_{1}} \tau_{q_{\mathbf{2}}}} x_{\ell} y_{q_{1}} y_{q_{\mathbf{2}}}+a_{\sigma_{\mathbf{3}}} z_{2,1},
\end{aligned}
$$

Refined equations for $S=\{2\}$

For $S=\{2\}$ and refinement (1), the localisation map simplifies to $\operatorname{loc}_{p}: \operatorname{Spec} \mathbb{Q}_{p}\left[y, z_{3}, z_{2,1}\right] \rightarrow \operatorname{Spec} \mathbb{Q}_{p}\left[\log , \mathrm{Li}_{1}, \mathrm{Li}_{2}, \mathrm{Li}_{3}, \mathrm{Li}_{2,1}, \mathrm{Li}_{4}, \mathrm{Li}_{3,1}, \mathrm{Li}_{2,1,1}\right]$ given by

$$
\begin{aligned}
\operatorname{loc}_{p}^{\sharp} \log & =0, \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{1} & =a_{\tau_{2}} y, \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{2} & =0, \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{3} & =a_{\sigma_{3}} z_{3}, \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{2,1} & =a_{\sigma_{3}} z_{2,1}, \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{4} & =0, \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{3,1} & =a_{\sigma_{3} \tau_{2}} y\left(z_{3}-1\right), \\
\operatorname{loc}_{p}^{\sharp} \mathrm{Li}_{2,1,1} & =a_{\sigma_{3} \tau_{2}} y\left(z_{2,1}-1\right) .
\end{aligned}
$$

So we find equations for $X\left(\mathbb{Z}_{p}\right)_{\{2\}, \infty}^{(1)}$ like

$$
a_{\sigma_{3}} a_{\tau_{2}} \mathrm{Li}_{2,1,1}(z)-a_{\sigma_{3} \tau_{2}} \mathrm{Li}_{1}(z)\left(\mathrm{Li}_{2,1}(z)-a_{\sigma_{3}}\right)=0 .
$$

5. Summary

Summary

- Motivic Selmer scheme classifies $\pi_{1}^{\text {mot }}(X, b)$-torsors
- More concrete descriptions via \mathbb{G}_{m}-equivariant cocycles:

$$
\begin{aligned}
\operatorname{Sel}_{S, \Pi}^{\operatorname{mot}}(X) & \cong Z^{1}\left(U_{S}, \Pi^{\mathrm{dR}}\right)^{\mathbb{G}_{m}} \\
& \cong Z^{1}\left(\operatorname{Lie}\left(U_{S}\right), \operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)\right)^{\mathbb{G}_{m}} \\
& \cong\left\{\text { graded Hopf cocycles } \mathbb{Q}\langle\Sigma \Sigma\rangle \rightarrow \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle\right\}
\end{aligned}
$$

- Coordinates: $f_{w}(c(\sigma))$ for $\sigma \in \Sigma, w$ Lyndon word in e_{0}, e_{1}
- Understand Galois action of $\operatorname{Lie}\left(U_{S}\right)$ on $\operatorname{Lie}\left(\Pi^{\mathrm{dR}}\right)$ via motivic MZVs
- Can compute localisation map loc $_{p}$ in coordinates
- Find new, non-polylogarithmic Coleman functions defining Chabauty-Kim loci

