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1. The étale fundamental group
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Topological invariants of schemes

Important invariants for a topological space X :
1. cohomology groups Hn(X ,A), where A is any abelian group;
2. fundamental groups πn(X , x), where x ∈ X is a base point.

Question
Can we define attach similar invariants to an algebraic variety?
Or even an arbitrary scheme?

One of the great achievements of Grothendieck, Deligne et. al. was
the invention of étale cohomology for schemes. It was the key to
Deligne’s proof of the famous Weil conjectures by transferring
topological results like the Lefschetz fixed-point theorem to the
world of schemes.

Grothendieck, Artin–Mazur, Friedlander also constructed étale
fundamental groups πét

n (X , x). We focus on πét
1 (X , x).
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Étale morphisms

The definition of both étale cohomology and étale fundamental
groups rests on the notion of étale morphism:

Definition
A morphism of schemes f : Y → X is étale if it is flat, locally of
finite presentation and for every geometric point x ∈ X (Ω), with Ω
algebraically closed, the fibre f −1(x) = x ×X Y is a disjoint union
of copies of Spec(Ω).

Roughly: étale = local homeomorphism
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Étale morphisms: examples

Example: fn : Gm,Q → Gm,Q, y 7→ yn is étale. The fibre over
x ∈ Ω× is

f −1
n (x) = Spec(Ω[T ]/(T n − x))

=
∐
ζ∈µn

Spec(Ω[T ]/(T − ζ n
√
x))

∼=
∐
ζ∈µn

Spec(Ω).

Non-example: fn : A1
Q → A1

Q, y 7→ yn is not étale. The fibre over
0 ∈ Ω is non-reduced:

f −1
n (0) = Spec(Ω[T ]/(T n)).
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Étale morphisms: examples

Example
If L/K is a finite separable field extension, then
π : Spec(L)→ Spec(K ) is étale.

Proof.
Primitive element theorem: L = K [T ]/(f ) with f separable. Let
x : K ↪→ Ω with Ω algebraically closed. Then
f (T ) = (T − α1) · · · (T − αn) with αi ∈ Ω pairwise distinct. Then

Ω⊗K L = Ω⊗K K [T ]/(f ) = Ω[T ]/(f )

CRT
=

∏
i

Ω[T ]/(T − αi ) ∼=
∏
i

Ω,

so π−1(x) ∼=
∐n

i=1 Spec(Ω).
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Étale cohomology

Let X be a scheme. An étale covering of X is a family of étale
morphisms (fi : Ui → X )i∈I such that

⋃
i fi (Ui ) = X . This defines a

“Grothendieck topology”.

An étale sheaf of abelian groups on X is a functor

F : (Sch /X )op → Ab

satisfying the sheaf condition for all étale coverings. The category
of étale sheaves on X has enough injectives, so one can define étale
cohomology Hn

ét(X ,F ) as the right derived functor of the global
sections functor Γ(X ,F ) := F (X ).

Comparison theorem: For a nonsingular variety X/C, one has
Hn

ét(X ,A) ∼= Hn(X (C),A) for all n ≥ 0 and finite groups A.
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Covering spaces

There are two ways of defining the fundamental group π1(X , x) of
a topological space:
▶ as homotopy classes of loops γ : [0, 1]→ X with

γ(0) = γ(1) = x ;
▶ via monodromy on fibres of covering spaces as follows:

A covering space of X is a continuous map f : Y → X such that
every point in X has a neighbourhood U such that f −1(U) is a
disjoint union of copies of U. Let Cov(X ) be the category of
covering spaces of X .

Examples:
▶ fn : C× → C×, y 7→ yn is a covering (of degree n);
▶ exp: C→ C×, y 7→ exp(y) is a covering (of infinite degree).
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Recovering the fundamental group from Cov(X )

π1(X , x) acts on the fibres Fibx(Y ) := f −1(x) via path-lifting:

Given a loop γ : [0, 1]→ X based at x and given y ∈ Fibx(Y ), then
γ lifts uniquely to a path γ̃ : [0, 1]→ Y with γ̃(0) = y . Define
γ.y := γ̃(1) ∈ Fibx(Y ).

The functor Y 7→ Fibx(Y ) defines an equivalence of categories

Cov(X ) ≃ π1(X , x)-Set .

This implies that π1(X , x) can be recovered from the category
Cov(X ) together with the fibre functor Fibx : Cov(X )→ Set as

π1(X , x) = Aut(Fibx).

That is, giving an element γ ∈ π1(X , x) is equivalent to giving an
automorphism of Fibx(Y ) for every Y ∈ Cov(X ), naturally in Y .
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The étale fundamental group

The definition of π1(X , x) via covering spaces carries over to
schemes.

Let X be any connected scheme and x ∈ X (Ω) a geometric point.
A finite étale cover of X is a morphism f : Y → X which is finite
and étale. Let Cov(X ) be the category of finite étale covers of X .
Each fibre Fibx(Y ) := f −1(x) is a finite set, so we get a functor

Fibx : Cov(X )→ FinSet .

Definition
The étale fundamental group πét

1 (X , x) is defined as the
automorphism group of the fibre functor:

πét
1 (X , x) := Aut(Fibx).
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The étale fundamental group: Examples

πét
1 (X , x) is naturally a profinite group.

One gets a tautological equivalence of categories

Cov(X ) ≃ πét
1 (X , x)-FinSet .

Examples:
▶ Complex varieties: If X/C is a nonsingular variety, there is

an equivalence

Cov(X ) ≃ (finite covers of X (C)),

which implies

πét
1 (X , x) = profinite completion of π1(X (C), x)

= inverse limit of finite quotients of π1(X (C), x).

Note that the comparison fails for infinite covers:
exp: C→ C× is not algebraic!
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The étale fundamental group: Examples

▶ Fields: If K is a field, K ↪→ K a separable closure, then the
connected finite étale covers of Spec(K ) are
Spec(L)→ Spec(K ) with L/K finite separable. This implies

πét
1 (Spec(K ), Spec(K )) = Gal(K/K ).

In other words, the étale fundamental group of Spec(K ) is the
absolute Galois group GK := Gal(K/K ).

▶ Abelian varieties: For an abelian variety A/Q, the étale
fundamental group is the Tate module

πét
1 (A, 0) = lim←−

n

A(Q)[n] =: T (A).
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2. The Section Conjecture
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Grothendieck’s letter to Faltings

In a letter to Faltings from 1983, Grothendieck lays out his vision of
what he calls anabelian geometry.

Idea: for a large class of schemes, a lot of information can be
recovered from the étale fundamental group.

Example: number fields are completely determined by their absolute
Galois group (Neukirch–Uchida theorem):

GK
∼= GL ⇒ K ∼= L.
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Anabelian schemes

This class of “anabelian schemes” should include at least the
following:

1. finitely generated fields over Q (Neukirch–Uchida, Pop)
2. hyperbolic curves over such fields (Mochizuki)
3. the moduli stacksMg ,n

4. successive fibrations by hyperbolic curves
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Fundamental exact sequence

Let X/K be a smooth projective curve of genus ≥ 2 over a number
field. Such curves are hyperbolic.

Grothendieck’s section conjecture predicts a way of recovering the
set of rational points X (K ) from the étale fundamental group.

The maps
XK → X → Spec(K )

induce an exact sequence

1→ πét
1 (XK )→ πét

1 (X )→ GK → 1 (FES)

of étale fundamental groups: the fundamental exact sequence.
If x ∈ X (K ) is a rational point, it induces a section sx of (FES),
well-defined up to πét

1 (XK )-conjugation. So we have a section map

X (K )→ Sec(X/K ) := {sections of (FES)}/∼ . (S)
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The Section Conjecture

Section Conjecture (Grothendieck, 1983)
If X/K is a smooth projective curve of genus ≥ 2 over a number
field, then (S) is a bijection X (K ) ∼= Sec(X/K ).

▶ (S) is known to be injective. The question is whether it is
surjective.

▶ Some examples of X have been constructed where one can
show that Sec(X/K ) = ∅ (Stix, Li–Litt–Salter–Srinivasan). In
these cases, (S) is bijective automatically.

Open Question
Can we find some X with X (K ) ̸= ∅ for which the Section
Conjecture holds?
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Selmer sections

If s is a section of the fundamental exact sequence and v is a place
of K , then the restriction s|Gv is a section of the local FES

1→ πét
1 (XK v

)→ πét
1 (XKv )→ Gv → 1 .

Definition
We say that s is Selmer (or sometimes locally geometric) if s|Gv

comes from a Kv -rational point xv ∈ X (Kv ) for all places v . We
write Sec(X/K )Sel for the set of Selmer sections.

So we have

X (K ) ⊆ Sec(X/K )Sel ⊆ Sec(X/K ) .

Selmer Section Conjecture
If X/K is a smooth projective curve of genus ≥ 2 over a number
field, then

X (K ) = Sec(X/K )Sel.
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Chabauty–Kim and the Selmer Section Conjecture

Recent joint work with Alex Betts and Theresa Kumpitsch:1

One can use the Chabauty–Kim method to prove instances
of the Selmer Section Conjecture.

1Chabauty–Kim and the Section Conjecture for locally geometric sections
arXiv:2305.09462
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3. The Chabauty–Kim method
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The Chabauty–Kim method

Let X/Q be a smooth projective curve of genus ≥ 2.
▶ We know that X (Q) is finite by Faltings’ Theorem.
▶ It is very difficult to provably compute X (Q) in general.
▶ The Chabauty–Coleman method can sometimes be used, but it

requires r < g .
▶ Minhyong Kim (2005) developed a non-abelian generalisation

which can be used for more general curves, called
Chabauty–Kim method or non-abelian Chabauty.

▶ It is still largely conjectural but has seen some spectacular
successes in recent years.
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The Chabauty–Kim diagram

Assume b ∈ X (Q). Let p be an auxiliary prime.

The Chabauty–Kim method works with the Qp-pro-unipotent
completion U of the étale fundamental group Π := πét

1 (XQ, b).

It comes with a continuous homomorphism

ϕ : Π→ U(Qp)

and with an action of GQ.

We have the Chabauty–Kim diagram

X (Q) X (Qp)

SelU(X/Q)(Qp) H1
f (Gp,U)(Qp)

j jp

locp

where SelU(X/Q) is called the global Selmer scheme.

More generally, U can be replaced with a GQ-equivariant quotient.
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Finiteness via Chabauty–Kim

X (Q) X (Qp)

SelU(X/Q)(Qp) H1
f (Gp,U)(Qp)

j jp

locp

Fact: locp is an algebraic map of affine Qp-schemes

Conjecture
locp is not dominant for sufficiently large U.

If satisfied (e.g., for dimension reasons), we get finiteness of X (Q).

Proof:
▶ Let 0 ̸= f : H1

f (Gp,U)→ A1 vanishing on im(locp)

▶ the pullback f ◦ jp : X (Qp)→ Qp is a nonzero p-adic analytic
function whose vanishing set is finite and contains X (Q)
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Kim’s Conjecture

Definition
The Chabauty–Kim locus associated to U is the set

X (Qp)U := {x ∈ X (Qp) : jp(x) ∈ im(locp)} ⊆ X (Qp) .

Commutativity of the Chabauty–Kim diagram gives

X (Q) ⊆ X (Qp)U ⊆ X (Qp) .

In the particular case that U is the whole fundamental group, we
write X (Qp)∞ for X (Qp)U . This is contained in all
other X (Qp)U ’s.

Kim’s Conjecture

X (Qp)∞ = X (Q).
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4. Our Results
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Kim’s conjecture implies Selmer Section Conjecture

We make precise the relationship between Kim’s Conjecture and
the Selmer Section Conjecture.

Theorem A (Betts–Kumpitsch–L.), projective case
Let X/Q be a smooth projective curve of genus ≥ 2
with X (Q) ̸= ∅. Suppose that Kim’s Conjecture holds for (X , p)
for p in a set P of primes of Dirichlet density 1. Then the Selmer
Section Conjecture holds for X .

This gives a new strategy for proving instances of the Selmer
Section Conjecture.

We show that the strategy is viable by verifying the hypotheses in
an example of an affine hyperbolic curve, the thrice-punctured line
over Z[1/2].
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Generalisation: S-integral points

Now fix a finite set S of primes. Let Y /Q be a hyperbolic curve,
and let Y/ZS be an S-integral model of Y .

Definition
A section s of the fundamental exact sequence for Y is S-Selmer
(with respect to the model Y) if s|Gp comes from a{

Qp-rational point yp ∈ Y (Qp) if p ∈ S ,
Zp-integral point yp ∈ Y(Zp) if p /∈ S ,

for all primes p. We write Sec(Y/ZS)
Sel for the set of S-Selmer

sections.

So we have
Y(ZS) ⊆ Sec(Y/ZS)

Sel ⊆ Sec(Y /Q) .

Conjecture (S-Selmer Section Conjecture)

Sec(Y/ZS)
Sel = Y(ZS) .
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Chabauty–Kim for S-integral points

There is also a version of the Chabauty–Kim method which applies
to S-integral points on Y, thus defining Chabauty–Kim loci

Y(ZS) ⊆ Y(Zp)S,U ⊆ Y(Zp).

Kim’s Conjecture

Y(Zp)S ,∞ = Y(ZS).

Theorem A (Betts–Kumpitsch–L.)
Let Y/ZS be a hyperbolic curve whose smooth completion has a
Q-rational point. Suppose that Kim’s Conjecture holds
for (Y,S , p) for p in a set P of primes of Dirichlet density 1. Then
the S-Selmer Section Conjecture holds for (Y, S).
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Theorem B

We can verify the hypotheses of Theorem A in one example.

Theorem B (Betts–Kumpitsch–L.)

Let Y = P1
Z[1/2] ∖ {0, 1,∞} be the thrice-punctured line

over Z[1/2]. Then Kim’s Conjecture holds for (Y, {2}, p) for all
odd primes p.

Consequence: The S-Selmer Section Conjecture holds
for Y = P1

Z[1/2] ∖ {0, 1,∞} and S = {2}.
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5. Proof of Theorem A
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Theorem A, recap

Theorem A, projective case
Let X/Q be a smooth projective curve of genus ≥ 2
with X (Q) ̸= ∅. Suppose that Kim’s Conjecture holds for (X , p)
for p in a set P of primes of Dirichlet density 1. Then the Selmer
Section Conjecture holds for X .
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Let s ∈ Sec(X/Q)Sel be a Selmer section, so s|Gp is induced by
some xp ∈ X (Qp) for all primes p.

Claim
xp ∈ X (Qp)∞ for all primes p.

Proof : Let Π = πét
1 (XQ, b) be the profinite étale fundamental

group based at some b ∈ X (Q). The section map

X (Q)→ Sec(X/Q)

can be identified with the map

X (Q)→ H1(GQ,Π)

sending a point x ∈ X (Q) to the cocycle c : GQ → Π measuring
the difference between the two sections sb and sx :

c(σ) = sx(σ)sb(σ)
−1.

Have a similar local section map X (Qℓ)→ H1(Gℓ,Π).
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Consider the Qp-pro-unipotent completion map ϕ : Π→ U(Qp).
For any prime ℓ, we then have a commuting diagram

X (Qℓ)

s ∈ H1(GQ,Π) H1(Gℓ,Π)

H1(GQ,U(Qp)) H1(Gℓ,U(Qp))

ϕ∗

locℓ

ϕ∗

locℓ

Selmer sections: elements of H1(GQ,Π) locally coming from X (Qℓ)
Selmer scheme: elements of H1(GQ,U(Qp)) locally coming from
X (Qℓ)

Since s is Selmer, ϕ∗(s) ∈ H1(GQ,U(Qp)) lies in the Selmer
scheme Sel∞(X/Q).

Martin Lüdtke 34/46



Take ℓ = p in the above diagram and restrict to Selmer elements:

xp ∈ X (Qp)

s ∈ Sec(X/Q)Sel H1(Gp,Π)

Sel∞(X/Q)(Qp) H1(Gp,U(Qp))

jp

ϕ∗

locp

ϕ∗

locp

Hence
jp(xp) = locp(ϕ∗(s)) ∈ locp(Sel∞(X/Q)),

and so xp ∈ X (Qp)∞ as claimed.
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If Kim’s Conjecture holds for (X , p) for all p ∈ P, then the
preceding claim shows that each

xp ∈ X (Q) ⊆ X (Qp)

is one of the finitely many rational points on X .

We proceed by proving:
1. The rational points xp for p ∈ P all agree, call it x .
2. The original Selmer section s is the one induced by x .

This shows that X satisfies the Selmer Section Conjecture.

Martin Lüdtke 36/46



6. Proof of Theorem B
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Theorem B, recap

Theorem B
Let Y = P1

Z[1/2] ∖ {0, 1,∞} be the thrice-punctured line
over Z[1/2]. Then Kim’s Conjecture holds for (Y, {2}, p) for all
odd primes p.

Recall that Kim’s conjecture says that the inclusion

Y(Z[1/2]) ⊆ Y(Zp){2},∞

is an equality.

Note that Z[1/2]× = {±2n : n ∈ Z} and

Y(Z[1/2]) = {z ∈ Z[1/2]× s.t. 1− z ∈ Z[1/2]×} = {2,−1, 1
2}.
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Key ideas of the proof

▶ The Selmer scheme has 3 irreducible components, one for each
cusp:

Sel∞(Y/Z[1/2]) = Sel∞(Y/Z[1/2])0 ∪ Sel∞(Y/Z[1/2])1 ∪ Sel∞(Y/Z[1/2])∞.

Accordingly, the Chabauty–Kim locus is a union

Y(Zp){2},∞ = Y(Zp)
0
{2},∞ ∪ Y(Zp)

1
{2},∞ ∪ Y(Zp)

∞
{2},∞.

This corresponds to the partition of

Y(Z[1/2]) = {2} ∪ {−1} ∪ {1
2}

into mod-2 reduction types.
▶ Consider only one component and exploit symmetries.
▶ Use the polylogarithmic quotient UPL of the fundamental

group and prove a motivic–étale comparison theorem for
Selmer schemes to import results by Corwin–Dan-Cohen.
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Explicit localisation map

Corwin–Dan-Cohen: The localisation map in the Chabauty–Kim
diagram

locp : SelPL(Y/Z[1/2])1 → H1
f (Gp,UPL)

is given by

locp : SpecQp[y , z3, z5, z7, . . .]→ SpecQp[log, Li1, Li2, Li3, . . .],

loc♯p log = 0,

loc♯p Li1 = log(2)y ,

loc♯p Li2 = 0,

loc♯p Li3 = ζ(3)z3,

loc♯p Li4 = 0,

loc♯p Li5 = ζ(5)z5,
...
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Coleman functions vanishing on the Chabauty–Kim locus

We find infinitely many functions on H1
f (Gp,UPL) which vanish on

the image of the Selmer scheme. Pulling back the functions along
jp shows:

Proposition
The following functions vanish on the Chabauty–Kim locus
Y(Zp)

1
{2},∞:

log(z) and Lik(z) for k ≥ 2 even.

Here, log and Lik are p-adic analytic functions on Y(Zp) defined as
iterated Coleman integrals:

log(z) =

∫ z

0

dz

z
, Lik(z) =

∫ z

0

dz

z
· · · dz

z

dz

1− z︸ ︷︷ ︸
k

.
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Proof of Kim’s conjecture

Now Kim’s conjecture for Y/Z[1/2] follows from:

Proposition
The only common zero in Y(Zp) of the functions log(z) and Lik(z)
for k ≥ 2 even is z = −1.

log(z) = 0 implies that z is a (p − 1)-st root of unity in Zp.

Lik has a mod-p variant lik : Fp → Fp given by

lik(z) =

p−1∑
i=1

z i

ik
.

Lik(z) = 0 implies lik(z) = 0. Take k = p− 3 and use little Fermat:

lip−3(z) =

p−1∑
i=1

i−(p−3)z i =

p−1∑
i=1

i2z i = z(z + 1)(z − 1)p−3.

Martin Lüdtke 42/46



Proof of Kim’s conjecture

At this point we have:
(1) z ∈ Y(Zp)

(2) z is a (p − 1)-st root of unity
(3) z := z mod p is a zero of lip−3(z) = z(z + 1)(z − 1)p−3

(3) implies z ∈ {0,−1, 1}.

But by (1), z is in Y(Fp) = Fp ∖ {0, 1}, so z = −1.

Finally, (2) implies z = −1.

This shows that
{−1} ⊆ Y(Zp)

1
{2},∞

is an equality, hence Kim’s conjecture holds.
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7. Further directions

Martin Lüdtke 44/46



Further directions

▶ In ongoing work with David Corwin and Ishai Dan-Cohen, we
are extending the Chabauty–Kim method for P1 ∖ {0, 1,∞}
beyond the polylogarithmic quotient. The resulting functions
for the CK locus involve multiple polylogarithms like Li3,1 and
Li2,1,1.

▶ As a first step towards higher dimensions, Ishai Dan-Cohen
and David Jarossay have applied the Chabauty–Kim method to
the surfaceM0,5 over Z[1/6] and produced an interesting
function for the CK locus.
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Thank you for listening
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