Refined Chabauty–Kim for the thrice-punctured line over $\mathbb{Z}[1/6]$

Martin Lüdtke

Rijksuniversiteit Groningen

Utrecht Algebraic Geometry Seminar 28 January 2025

university of groningen X/\mathbb{Q} smooth projective curve of genus $g\geq 2$

- Chabauty (1941): proved finiteness if $r := \operatorname{rk} \operatorname{Jac}_X(\mathbb{Q}) < g$
- ► Faltings (1983): proved Mordell in general

Open problem: How to determine $X(\mathbb{Q})$ in practice?

Can use computer search to list points in $X(\mathbb{Q})$ but how do we know we found them all? Chabauty's proof can be made effective but the condition r < g is not always satisfied

The cursed curve

Example: the cursed curve

$$y^4 + 5x^4 - 6x^2y^2 + 6x^3 + 26x^2y + 10xy^2 - 10y^3 - 32x^2 - 40xy + 24y^2 + 32x - 16y = 0$$

It has rational points

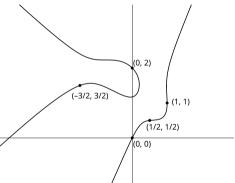
 $(0,0), (0,2), (1,1), (\frac{1}{2},\frac{1}{2}), (-\frac{3}{2},\frac{3}{2})$

but how do we know there are no others? This question comes up in a uniformity question of Serre from 1972 about residual Galois representations of elliptic curves.

Chabauty does not apply since r = g = 3.

Idea: develop "non-abelian" generalisation of Chabauty

Kim (2005): Chabauty–Kim method (aka non-abelian Chabauty)



For p a prime of good reduction, try to locate $X(\mathbb{Q})$ inside $X(\mathbb{Q}_p)$. Kim constructs a descending sequence of subsets

$$X(\mathbb{Q}_p) \supseteq X(\mathbb{Q}_p)_1 \supseteq X(\mathbb{Q}_p)_2 \supseteq \ldots$$

all containing $X(\mathbb{Q})$. The set $X(\mathbb{Q}_p)_n$ is called the Chabauty-Kim locus of depth n.

- X(Q_p)_n is cut out inside X(Q_p) by p-adic analytic functions (more precisely: iterated Coleman integrals)
 ⇒ X(Q_p)_n finite or all of X(Q_p)
- $X(\mathbb{Q}_p)_1$ is finite if r < g (Chabauty)
- $X(\mathbb{Q}_p)_2$ is finite if $r < g + \rho 1$, where $\rho := \operatorname{rk} \mathsf{NS}(\mathsf{Jac}_X)$ (Quadratic Chabauty)
- ▶ Bloch–Kato or Fontaine–Mazur conjecture $\Rightarrow \#X(\mathbb{Q}_p)_n < \infty$ for $n \gg 0$

Kim's Conjecture

 $X(\mathbb{Q}_p)_n = X(\mathbb{Q})$ for $n \gg 0$.

- Practical relevance: if true, can try to compute X(Q) by computing X(Q_p)_n for n = 1, 2, ...
- Theoretical relevance: Kim's Conjecture implies local-to-global principle for Grothendieck's Section Conjecture (Betts–Kumpitsch–L.)

Computing $X(\mathbb{Q}_p)_n$ is hard!

Construction of Chabauty-Kim loci

▶ Fix rational basepoint $b \in X(\mathbb{Q})$

►
$$\pi_1^{ ext{ét}}(X_{\overline{\mathbb{Q}}}, b) \coloneqq$$
 étale fundamental group of $X_{\overline{\mathbb{Q}}}$

• $U_X :=$ its \mathbb{Q}_p -prounipotent completion = " $\pi_1^{\acute{e}t}(X_{\overline{\mathbb{Q}}}, b) \otimes_{\hat{\mathbb{Z}}} \mathbb{Q}_p$ "

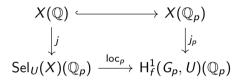
•
$$G_{\mathbb{Q}} \coloneqq \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$$
 acts on $(X_{\overline{\mathbb{Q}}}, b)$, hence on U_X .

Let $U_X \rightarrow U$ be a $G_{\mathbb{Q}}$ -equivariant quotient. We have the Chabauty–Kim diagram

$$egin{array}{lll} X(\mathbb{Q}) & & \longrightarrow & X(\mathbb{Q}_p) \ & & & & \downarrow^{j_p} \ & & & \downarrow^{j_p} \ & & & \mathsf{Sel}_U(X)(\mathbb{Q}_p) & \stackrel{\mathsf{loc}_p}{\longrightarrow} & \mathsf{H}^1_f(G_p,U)(\mathbb{Q}_p) \end{array}$$

 $\operatorname{Sel}_U(X)$ and $\operatorname{H}^1_f(G_p, U)$ are affine \mathbb{Q}_p -schemes, the global and local Selmer scheme. They are moduli spaces for *U*-torsors with $G_{\mathbb{Q}^-}$ resp. $G_{\mathbb{Q}_p}$ -action, and the vertical maps are constructed by taking path torsors: $x \mapsto \pi_1^{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{Q}}}; b, x)$

Construction of Chabauty-Kim loci



Fact: loc_p is an algebraic map of affine \mathbb{Q}_p -schemes

Strategy:

- show that loc_p is not dominant (e.g., for dimension reasons)
- find $0 \neq f$: $H^1_f(G_p, U) \to \mathbb{A}^1$ vanishing on im(loc_p)
- ► the pullback f ∘ j_p: X(Q_p) → Q_p is a nonzero p-adic analytic function whose vanishing set is finite and contains X(Q)

Construction of Chabauty-Kim loci

Definition

The Chabauty–Kim locus associated to U is the set

$$egin{aligned} X(\mathbb{Q}_p)_U &\coloneqq \{x \in X(\mathbb{Q}_p) \ : \ j_p(x) \in \operatorname{im}(\operatorname{\mathsf{loc}}_p)\} \ &= igcap_{f ext{ as above}} V(f \circ j_p) \subseteq X(\mathbb{Q}_p) \,. \end{aligned}$$

Commutativity of the Chabauty-Kim diagram implies

 $X(\mathbb{Q}) \subseteq X(\mathbb{Q}_p)_U \subseteq X(\mathbb{Q}_p).$

If $U = U_{X,n}$ is the *n*-th lower central series quotient of U_X , we write $X(\mathbb{Q}_p)_n$ for the associated "depth *n*" Chabauty–Kim locus.

$$\Rightarrow X(\mathbb{Q}_p) \supseteq X(\mathbb{Q}_p)_1 \supseteq X(\mathbb{Q}_p)_2 \supseteq \dots$$

Quadratic Chabauty

• Quadratic Chabauty (Balakrishnan, Dogra,...) uses a certain intermediate quotient $U_{X,2} \rightarrow U_{QC} \rightarrow U_{X,1}$ to construct a subset

 $X(\mathbb{Q}_p)_1 \supseteq X(\mathbb{Q}_p)_{\mathsf{QC}} \supseteq X(\mathbb{Q}_p)_2.$

It can be described using *p*-adic heights and is finite whenever $r < g + \rho - 1$, where $\rho := \operatorname{rk} NS(\operatorname{Jac}_X)$. Very few results beyond that.

Quadratic Chabauty broke the curse of the cursed curve:

 $X(\mathbb{Q}_{17})_{\mathsf{QC}} = X(\mathbb{Q})$

(Balakrishnan, Dogra, Müller, Tuitman, Vonk 2019) → Quanta article: "Mathematicians Crack the Cursed Curve"

We would like to have an algorithm for computing $X(\mathbb{Q}_p)_n$ for larger n.

The thrice-punctured line

Today: compute some (refined) Chabauty-Kim loci in the best-understood example

 $\mathbb{P}^1 \smallsetminus \{0, 1, \infty\}.$

Setting:

- \blacktriangleright S: finite set of primes
- $\mathbb{Z}_S = \mathcal{O}(\operatorname{Spec}(\mathbb{Z}) \setminus S) = \mathbb{Z}[\frac{1}{\ell} : \ell \in S]$: ring of *S*-integers
- $X = \mathbb{P}^1_{\mathbb{Z}_S} \setminus \{0, 1, \infty\}$: thrice-punctured line

We are interested in the S-integral points $X(\mathbb{Z}_S)$. S-unit equation:

$$x + y = 1$$
 with $x, y \in \mathbb{Z}_S^{\times}$

Solutions are $x \in \mathbb{Q}$ s.t. x and 1 - x are of the form $\pm \prod_{\ell \in S} \ell^{e_{\ell}}$ with $e_{\ell} \in \mathbb{Z}$.

Theorem (Siegel–Mahler, 1933)

 $X(\mathbb{Z}_S)$ is finite.

Some small sets S

• Example $S = \emptyset$:

$$X(\mathbb{Z}) = \emptyset$$

• Example $S = \{2\}$:

$$X(\mathbb{Z}[1/2]) = \left\{2, -1, \frac{1}{2}\right\}$$

► Example
$$S = \{2, 3\}$$
:

$$X(\mathbb{Z}[1/6]) = \left\{2, \frac{1}{2}, -1, 3, \frac{1}{3}, \frac{2}{3}, \frac{3}{2}, -\frac{1}{2}, -2, 4, \frac{1}{4}, \frac{3}{4}, \frac{4}{3}, -\frac{1}{3}, -3, 9, \frac{1}{9}, \frac{8}{9}, \frac{9}{8}, -\frac{1}{8}, -8\right\}$$

(Levi ben Gershon 1342, The Harmony of Numbers)

Let $p \notin S$, so that $X(\mathbb{Z}_S) \subseteq X(\mathbb{Z}_p)$. Have Chabauty–Kim loci

$$X(\mathbb{Z}_p) \supseteq X(\mathbb{Z}_p)_{S,1} \supseteq X(\mathbb{Z}_p)_{S,2} \supseteq \ldots$$

all containing $X(\mathbb{Z}_S)$, as in the projective higher genus case.

Theorem (Kim, 2005)

 $\#X(\mathbb{Z}_p)_{S,n} < \infty$ for $n \gg 0$

Dan-Cohen, Wewers, Brown, Corwin: motivic variant of Chabauty-Kim method

Refined Chabauty-Kim

Betts-Dogra (2020): refined Chabauty-Kim loci

$$X(\mathbb{Z}_p) \supseteq X(\mathbb{Z}_p)_{S,1}^{\min} \supseteq X(\mathbb{Z}_p)_{S,2}^{\min} \supseteq \dots$$

Idea: partition S-integral points by their reductions modulo primes $\ell \in S$

$$\operatorname{red}_\ell \colon X(\mathbb{Z}_S) \subseteq \mathbb{P}^1(\mathbb{Z}_S) = \mathbb{P}^1(\mathbb{Z}) \twoheadrightarrow \mathbb{P}^1(\mathbb{F}_\ell)$$

Refined Kim's Conjecture

 $X(\mathbb{Z}_p)_{S,n}^{\min} = X(\mathbb{Z}_S)$ for $n \gg 0$

proved for $S = \{2\}$ and all odd p in depth max(1, p - 3) (Betts-Kumpitsch-L., 2023) proved for $S = \{2, q\}$ and p = 3 in depth 2 when $q = 2^n \pm 1 > 3$ Fermat or Mersenne (Best-Betts-Kumpitsch-L.-McAndrew-Qian-Studnia-Xu, 2024) case $S = \{2, 3\}$: depth 2 does not suffice \rightarrow go to depth 4 (later)

Depth 2 loci

Let $S = \{2, q\}$ for some odd prime q. Focus on $X(\mathbb{Z}_S)_{(1,0)} \coloneqq \{x \in X(\mathbb{Z}_S) : \operatorname{red}_2(x) \in X \cup \{1\}, \operatorname{red}_q(x) \in X \cup \{0\}\}$ and associated refined Chabauty-Kim loci $X(\mathbb{Z}_p)_{S, n}^{(1,0)}$.

Theorem (BBKLMQSX)

The depth 2 locus $X(\mathbb{Z}_p)^{(1,0)}_{\{2,q\},2}$ is defined inside $X(\mathbb{Z}_p)$ by $\operatorname{Li}_2(z) - a \log(z) \operatorname{Li}_1(z) = 0$

for some computable p-adic constant $a = a(q) \in \mathbb{Q}_p$.

Here, log is the p-adic logarithm and Li_m is the p-adic polylogarithm

$$\operatorname{Li}_m(z) = \int_0^z \frac{\mathrm{d}x}{x} \cdots \frac{\mathrm{d}x}{x} \frac{\mathrm{d}x}{1-x}$$

(*m*-fold iterated integral)

Computing depth 2 loci

L. (2024): Sage code for computing $X(\mathbb{Z}_p)^{(1,0)}_{\{2,q\},2}$ for arbitrary p and $q \rightarrow \text{https://github.com/martinluedtke/RefinedCK}$

Example: $S = \{2,3\}$, p = 5. Have $X(\mathbb{Z}[1/6])_{(1,0)} = \{-3, -1, 3, 9\}$.

p = 5; q = 3 a = -Qp(p)(3).polylog(2) CK_depth_2_locus(p,q,10,a)

Output:

```
\begin{bmatrix} 2 + 0(5^{9}), \\ 2 + 4*5 + 4*5^{2} + 4*5^{3} + 4*5^{4} + 4*5^{5} + 4*5^{6} + 4*5^{7} + 4*5^{8} + 0(5^{9}), \\ 3 + 0(5^{6}), \\ 3 + 5^{2} + 2*5^{3} + 5^{4} + 3*5^{5} + 0(5^{6}), \\ 4 + 4*5 + 4*5^{2} + 4*5^{3} + 4*5^{4} + 4*5^{5} + 4*5^{6} + 4*5^{7} + 4*5^{8} + 0(5^{9}), \\ 4 + 5 + 0(5^{9}) \end{bmatrix}
```

Analysing the size of depth 2 loci

How does the size of $X(\mathbb{Z}_p)^{(1,0)}_{\{2,3\},2}$ vary with the choice of auxiliary prime p?

р	5	7	11	13	17	19	23	29	31	 1091	1093	1097	
$\#X(\mathbb{Z}_p)^{(1,0)}_{\{2,3\},2}$	6	8	18	16	22	20	20	26	36	 1076	2154	1078	

Observations:

- size always seems to be even
- ▶ 0 or 2 points in each residue disc

▶ almost always of size $\approx p$, but for $p \in \{1093, 3511\}$ of size $\approx 2p$

Can explain this. Related to 1093 and 3511 being (the only known) Wieferich primes, i.e., primes with $2^{p-1} \equiv 1 \mod p^2$.

Similar observations for $S = \{2, q\}$ with q different from 3.

$$\operatorname{Li}_2(z) - a(q)\log(z)\operatorname{Li}_1(z) = 0$$

How to compute the zero locus in $X(\mathbb{Z}_p)$?

- Compute the *p*-adic constant *a*(*q*) using modified algorithm of Dan-Cohen-Wewers
 → https://github.com/martinluedtke/dcw_coefficients
- 2. Compute power series for polylogarithms on residue discs around roots of unity ζ

$$\mathsf{Li}_m(\zeta + pt) = \sum_{k=1}^{\infty} a_{m,k} t^k$$

 \rightarrow Besser–de Jeu's "Li^(p)-service" paper

3. Implemented Hensel's Lemma for finding roots of *p*-adic power series with correct precision: function Zproots

 \rightarrow https://github.com/martinluedtke/RefinedCK

The 2-adic polynomial $t^2 - 1$ with roots $\{\pm 1\}$, when given only to precision 2, cannot be distinguished from $t^2 - 5$ which has no roots in \mathbb{Z}_2 :

K = Qp(2,prec=2)
R.<t> = K['t']
Zproots(t²-1) # => PrecisionError

When $t^2 - 1$ is given to precision 3, the roots $\{1, -1\}$ are determined to precision 2. The polynomial cannot be distinguished from $t^2 - 9$ with roots $\{-3, 3\}$.

K = Qp(2,prec=3)
R.<t> = K['t']
Zproots(t²-1) # => [1 + 0(2²), 1 + 2 + 0(2²)]

Adapting work of Corwin and Dan-Cohen to the refined setting, we derive a new function for the refined depth 4 locus in the case $S = \{2, 3\}$:

Theorem (L. 2024)

Let $S = \{2,3\}$ and $p \notin S$. Any point z in the refined Chabauty–Kim locus $X(\mathbb{Z}_p)^{(1,0)}_{\{2,3\},4}$ satisfies, in addition to the depth 2 equation, the equation

$$\det \begin{pmatrix} \mathsf{Li}_4(z) & \log(z) \,\mathsf{Li}_3(z) & \log(z)^3 \,\mathsf{Li}_1(z) \\ \mathsf{Li}_4(3) & \log(3) \,\mathsf{Li}_3(3) & \log(3)^3 \,\mathsf{Li}_1(3) \\ \mathsf{Li}_4(9) & \log(9) \,\mathsf{Li}_3(9) & \log(9)^3 \,\mathsf{Li}_1(9) \end{pmatrix} = 0.$$

Also have a depth 4 equation for general $S = \{2, q\}$ but it is less explicit.

Computing depth 4 loci for $S = \{2, 3\}$

Use the new equation to compute depth 4 locus $X(\mathbb{Z}_p)^{(1,0)}_{\{2,3\},4}$:

p = 5; q = 3; N = 10 coeffs = Z_one_sixth_coeffs(p,N) CK_depth_4_locus(p,q,N,coeffs)

Output:

```
\begin{bmatrix} 2 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 0(5^9), \\ 3 + 0(5^6), \\ 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 0(5^9), \\ 4 + 5 + 0(5^9) \end{bmatrix}
```

This is $\{-3, 3, -1, 9\} = X(\mathbb{Z}[1/6])_{(1,0)}$, extra points are eliminated.

 \Rightarrow Refined Kim's Conjecture holds for $S = \{2,3\}$ and p = 5

I computed depth 4 loci for $S = \{2, 3\}$ for many primes p:

Theorem (L. 2024)

The Refined Kim's Conjecture holds for $S = \{2,3\}$ and all primes 3 .

- Sage code to compute depth 2 Chabauty–Kim loci for $S = \{2, q\}$ and all p
- Analysed sizes of those loci, explained numerical observations
- Derived functions vanishing on depth 4 loci
- Verified Kim's Conjecture for $S = \{2,3\}$ and p < 10,000

References

[BBK+24]	A. Best, L. A. Betts, T. Kumpitsch, M. Lüdtke, A. McAndrew, L. Qian, E. Studnia, and Y. Xu. "Refined Selmer equations for the thrice-punctured line in depth two". In: <i>Math. Comp.</i> 93 (2024), pp. 1497–1527.
[BD20]	L. A. Betts and N. Dogra. The local theory of unipotent Kummer maps and refined Selmer schemes. 2020. arXiv: 1909.05734v2 [math.NT].
[BKL23]	L. A. Betts, T. Kumpitsch, and M. Lüdtke. Chabauty–Kim and the Section Conjecture for locally geometric sections. 2023. arXiv: 2305.09462v1 [math.NT].
[Bro17]	F. Brown. Integral points on curves, the unit equation, and motivic periods. 2017. arXiv: 1704.00555v1 [math.NT].
[CD20]	D. Corwin and I. Dan-Cohen. "The polylog quotient and the Goncharov quotient in computational Chabauty–Kim theory I". In: <i>Int. J. Number Theory</i> 16 (2020), pp. 1859–1905.
[DW15]	I. Dan-Cohen and S. Wewers. "Explicit Chabauty–Kim theory for the thrice punctured line in depth 2". In: <i>Proc. Lond. Math. Soc.</i> 110.1 (2015), pp. 133–171.
[Kim05]	M. Kim. "The motivic fundamental group of $P^1 \setminus \{0, 1, \infty\}$ and the theorem of Siegel". In: Invent. Math. 161.3 (2005), pp. 629–656.
[Lüd25]	M. Lüdtke. "Refined Chabauty–Kim computations for the thrice-punctured line over $\mathbb{Z}[1/6]$ ". In: <i>Res. Number Theory</i> 11 (2025).

Thanks for listening...

Hereweg Groningen in 1906. Source: https://www.groningerarchieven.nl

(18) In the summer of 1936 at Groningen in the Netherlands, when I was still working at the University there, a bicycle rider ran into me. As a consequence, the tuberculosis in my right knee bone, which had been dormant for many years, flared up again. It therefore became necessary to undergo several bone operations in 1936 and 1937. This was naturally a very painful period and I was given many morphine injections, although my doctor warned me against their danger.

After a further operation the pains and hence also the injections finally stopped. Then I tried to convince myself that the drug had not damaged my brain by studying the problem of the possible transcendency of the decimal fraction

D = 0.123456789101112...

in which the successive integers are written one after the other. I found that I could still do mathematics and succeeded in proving the transcendency of both D and of infinitely many more general decimal fractions.

From: K. Mahler, Fifty years as a mathematician

... and watch out for rogue cyclists!